Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996860168> ?p ?o ?g. }
- W1996860168 endingPage "317" @default.
- W1996860168 startingPage "311" @default.
- W1996860168 abstract "The assessment of the risk of default on credit is important for financial institutions. Different Artificial Neural Networks (ANN) have been suggested to tackle the credit scoring problem, however, the obtained error rates are often high. In the search for the best ANN algorithm for credit scoring, this paper contributes with the application of an ANN Training Algorithm inspired by the neurons' biological property of metaplasticity. This algorithm is especially efficient when few patterns of a class are available, or when information inherent to low probability events is crucial for a successful application, as weight updating is overemphasized in the less frequent activations than in the more frequent ones. Two well-known and readily available such as: Australia and German data sets has been used to test the algorithm. The results obtained by AMMLP shown have been superior to state-of-the-art classification algorithms in credit scoring." @default.
- W1996860168 created "2016-06-24" @default.
- W1996860168 creator A5007955803 @default.
- W1996860168 creator A5057790389 @default.
- W1996860168 creator A5079304095 @default.
- W1996860168 creator A5081613025 @default.
- W1996860168 creator A5082633005 @default.
- W1996860168 date "2011-08-01" @default.
- W1996860168 modified "2023-10-13" @default.
- W1996860168 title "ARTIFICIAL METAPLASTICITY NEURAL NETWORK APPLIED TO CREDIT SCORING" @default.
- W1996860168 cites W1966528570 @default.
- W1996860168 cites W1980770954 @default.
- W1996860168 cites W1989906353 @default.
- W1996860168 cites W1991808165 @default.
- W1996860168 cites W1995953281 @default.
- W1996860168 cites W1996865068 @default.
- W1996860168 cites W2011108441 @default.
- W1996860168 cites W2011441697 @default.
- W1996860168 cites W2014011240 @default.
- W1996860168 cites W2032784723 @default.
- W1996860168 cites W2034758817 @default.
- W1996860168 cites W2038313399 @default.
- W1996860168 cites W2053500637 @default.
- W1996860168 cites W2058144316 @default.
- W1996860168 cites W2058417559 @default.
- W1996860168 cites W2060747287 @default.
- W1996860168 cites W2063960053 @default.
- W1996860168 cites W2070857393 @default.
- W1996860168 cites W2077847090 @default.
- W1996860168 cites W2093829413 @default.
- W1996860168 cites W2103780778 @default.
- W1996860168 cites W2106043078 @default.
- W1996860168 cites W2107282997 @default.
- W1996860168 cites W2135411679 @default.
- W1996860168 cites W2145576157 @default.
- W1996860168 cites W2160456997 @default.
- W1996860168 cites W2171533361 @default.
- W1996860168 cites W3123427206 @default.
- W1996860168 doi "https://doi.org/10.1142/s0129065711002857" @default.
- W1996860168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21809477" @default.
- W1996860168 hasPublicationYear "2011" @default.
- W1996860168 type Work @default.
- W1996860168 sameAs 1996860168 @default.
- W1996860168 citedByCount "45" @default.
- W1996860168 countsByYear W19968601682012 @default.
- W1996860168 countsByYear W19968601682013 @default.
- W1996860168 countsByYear W19968601682014 @default.
- W1996860168 countsByYear W19968601682015 @default.
- W1996860168 countsByYear W19968601682016 @default.
- W1996860168 countsByYear W19968601682017 @default.
- W1996860168 countsByYear W19968601682018 @default.
- W1996860168 countsByYear W19968601682019 @default.
- W1996860168 countsByYear W19968601682020 @default.
- W1996860168 countsByYear W19968601682021 @default.
- W1996860168 countsByYear W19968601682022 @default.
- W1996860168 countsByYear W19968601682023 @default.
- W1996860168 crossrefType "journal-article" @default.
- W1996860168 hasAuthorship W1996860168A5007955803 @default.
- W1996860168 hasAuthorship W1996860168A5057790389 @default.
- W1996860168 hasAuthorship W1996860168A5079304095 @default.
- W1996860168 hasAuthorship W1996860168A5081613025 @default.
- W1996860168 hasAuthorship W1996860168A5082633005 @default.
- W1996860168 hasConcept C10138342 @default.
- W1996860168 hasConcept C111472728 @default.
- W1996860168 hasConcept C119857082 @default.
- W1996860168 hasConcept C138885662 @default.
- W1996860168 hasConcept C154945302 @default.
- W1996860168 hasConcept C162324750 @default.
- W1996860168 hasConcept C170493617 @default.
- W1996860168 hasConcept C178350159 @default.
- W1996860168 hasConcept C185592680 @default.
- W1996860168 hasConcept C189950617 @default.
- W1996860168 hasConcept C194973443 @default.
- W1996860168 hasConcept C2777212361 @default.
- W1996860168 hasConcept C41008148 @default.
- W1996860168 hasConcept C50644808 @default.
- W1996860168 hasConcept C55493867 @default.
- W1996860168 hasConcept C98229152 @default.
- W1996860168 hasConceptScore W1996860168C10138342 @default.
- W1996860168 hasConceptScore W1996860168C111472728 @default.
- W1996860168 hasConceptScore W1996860168C119857082 @default.
- W1996860168 hasConceptScore W1996860168C138885662 @default.
- W1996860168 hasConceptScore W1996860168C154945302 @default.
- W1996860168 hasConceptScore W1996860168C162324750 @default.
- W1996860168 hasConceptScore W1996860168C170493617 @default.
- W1996860168 hasConceptScore W1996860168C178350159 @default.
- W1996860168 hasConceptScore W1996860168C185592680 @default.
- W1996860168 hasConceptScore W1996860168C189950617 @default.
- W1996860168 hasConceptScore W1996860168C194973443 @default.
- W1996860168 hasConceptScore W1996860168C2777212361 @default.
- W1996860168 hasConceptScore W1996860168C41008148 @default.
- W1996860168 hasConceptScore W1996860168C50644808 @default.
- W1996860168 hasConceptScore W1996860168C55493867 @default.
- W1996860168 hasConceptScore W1996860168C98229152 @default.
- W1996860168 hasIssue "04" @default.
- W1996860168 hasLocation W19968601681 @default.
- W1996860168 hasLocation W19968601682 @default.
- W1996860168 hasOpenAccess W1996860168 @default.