Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996902942> ?p ?o ?g. }
- W1996902942 abstract "In this paper, we show how the Metropolis-Hastings algorithm can be used to sample shapes from a distribution defined over the space of signed distance functions. We extend the basic random walk Metropolis-Hastings method to high-dimensional curves using a proposal distribution that can simultaneously maintain the signed distance function property and the ergodic requirement. We show that detailed balance is approximately satisfied and that the Markov chain will asymptotically converge. A key advantage of our approach is that the shape representation is implicit throughout the process, as compared to existing work where explicit curve parameterization is required. Furthermore, our framework can be carried over to 3D situations easily. We show several applications of the framework to shape sampling from multimodal distributions and medical image segmentation." @default.
- W1996902942 created "2016-06-24" @default.
- W1996902942 creator A5049207791 @default.
- W1996902942 creator A5090385327 @default.
- W1996902942 date "2009-09-01" @default.
- W1996902942 modified "2023-09-26" @default.
- W1996902942 title "Markov Chain Monte Carlo shape sampling using level sets" @default.
- W1996902942 cites W1486647633 @default.
- W1996902942 cites W1555683961 @default.
- W1996902942 cites W1598503809 @default.
- W1996902942 cites W1604679511 @default.
- W1996902942 cites W1991113069 @default.
- W1996902942 cites W1992192543 @default.
- W1996902942 cites W2008703230 @default.
- W1996902942 cites W2020999234 @default.
- W1996902942 cites W2021513670 @default.
- W1996902942 cites W2030911724 @default.
- W1996902942 cites W2042204212 @default.
- W1996902942 cites W2048828405 @default.
- W1996902942 cites W2056760934 @default.
- W1996902942 cites W2074841047 @default.
- W1996902942 cites W2093834886 @default.
- W1996902942 cites W2098152234 @default.
- W1996902942 cites W2101560656 @default.
- W1996902942 cites W2102657595 @default.
- W1996902942 cites W2104095591 @default.
- W1996902942 cites W2106110775 @default.
- W1996902942 cites W2106706098 @default.
- W1996902942 cites W2110281611 @default.
- W1996902942 cites W2129143463 @default.
- W1996902942 cites W2132363464 @default.
- W1996902942 cites W2138309709 @default.
- W1996902942 cites W2153504150 @default.
- W1996902942 cites W2155343350 @default.
- W1996902942 cites W2159539239 @default.
- W1996902942 cites W2167338900 @default.
- W1996902942 doi "https://doi.org/10.1109/iccvw.2009.5457687" @default.
- W1996902942 hasPublicationYear "2009" @default.
- W1996902942 type Work @default.
- W1996902942 sameAs 1996902942 @default.
- W1996902942 citedByCount "11" @default.
- W1996902942 countsByYear W19969029422012 @default.
- W1996902942 countsByYear W19969029422013 @default.
- W1996902942 countsByYear W19969029422016 @default.
- W1996902942 countsByYear W19969029422018 @default.
- W1996902942 countsByYear W19969029422019 @default.
- W1996902942 countsByYear W19969029422022 @default.
- W1996902942 crossrefType "proceedings-article" @default.
- W1996902942 hasAuthorship W1996902942A5049207791 @default.
- W1996902942 hasAuthorship W1996902942A5090385327 @default.
- W1996902942 hasBestOaLocation W19969029422 @default.
- W1996902942 hasConcept C105795698 @default.
- W1996902942 hasConcept C106131492 @default.
- W1996902942 hasConcept C111350023 @default.
- W1996902942 hasConcept C11413529 @default.
- W1996902942 hasConcept C119857082 @default.
- W1996902942 hasConcept C121194460 @default.
- W1996902942 hasConcept C122044880 @default.
- W1996902942 hasConcept C124504099 @default.
- W1996902942 hasConcept C126255220 @default.
- W1996902942 hasConcept C134306372 @default.
- W1996902942 hasConcept C140779682 @default.
- W1996902942 hasConcept C154945302 @default.
- W1996902942 hasConcept C159886148 @default.
- W1996902942 hasConcept C17744445 @default.
- W1996902942 hasConcept C19499675 @default.
- W1996902942 hasConcept C199539241 @default.
- W1996902942 hasConcept C204693719 @default.
- W1996902942 hasConcept C2776359362 @default.
- W1996902942 hasConcept C28826006 @default.
- W1996902942 hasConcept C31972630 @default.
- W1996902942 hasConcept C33923547 @default.
- W1996902942 hasConcept C41008148 @default.
- W1996902942 hasConcept C52740198 @default.
- W1996902942 hasConcept C71169176 @default.
- W1996902942 hasConcept C89600930 @default.
- W1996902942 hasConcept C94625758 @default.
- W1996902942 hasConcept C98763669 @default.
- W1996902942 hasConceptScore W1996902942C105795698 @default.
- W1996902942 hasConceptScore W1996902942C106131492 @default.
- W1996902942 hasConceptScore W1996902942C111350023 @default.
- W1996902942 hasConceptScore W1996902942C11413529 @default.
- W1996902942 hasConceptScore W1996902942C119857082 @default.
- W1996902942 hasConceptScore W1996902942C121194460 @default.
- W1996902942 hasConceptScore W1996902942C122044880 @default.
- W1996902942 hasConceptScore W1996902942C124504099 @default.
- W1996902942 hasConceptScore W1996902942C126255220 @default.
- W1996902942 hasConceptScore W1996902942C134306372 @default.
- W1996902942 hasConceptScore W1996902942C140779682 @default.
- W1996902942 hasConceptScore W1996902942C154945302 @default.
- W1996902942 hasConceptScore W1996902942C159886148 @default.
- W1996902942 hasConceptScore W1996902942C17744445 @default.
- W1996902942 hasConceptScore W1996902942C19499675 @default.
- W1996902942 hasConceptScore W1996902942C199539241 @default.
- W1996902942 hasConceptScore W1996902942C204693719 @default.
- W1996902942 hasConceptScore W1996902942C2776359362 @default.
- W1996902942 hasConceptScore W1996902942C28826006 @default.
- W1996902942 hasConceptScore W1996902942C31972630 @default.
- W1996902942 hasConceptScore W1996902942C33923547 @default.
- W1996902942 hasConceptScore W1996902942C41008148 @default.