Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996931454> ?p ?o ?g. }
- W1996931454 endingPage "92" @default.
- W1996931454 startingPage "77" @default.
- W1996931454 abstract "The quartz crystal microbalance (QCM) was used to create piezoelectric whole-cell biosensors utilizing either living endothelial cells (ECs) or the metastatic human mammary cancer cell line MDA-MB-231 adhering to the gold QCM surface under in vitro growth conditions. We utilized the whole-cell QCM biosensors for the detection of the effects of varying concentrations of the microtubule binding drugs taxol and nocodazole by measuring changes in the QCM steady state frequency (Δf) and motional resistance (ΔR), shift values. Using 0.11–50 μM nocodazole, we observed the Δf shift values of the biosensors, consisting of 20,000 ECs, to decrease significantly in magnitude (nearly 100%) to a limiting value, in a dose-dependent fashion, over a 5- to 6-h incubation period following drug addition. This effect is consistent with nocodazole’s known disruption of intracellular microtubules. On the other hand, 10 μM taxol caused little alteration in Δf over the same time period, consistent with its microtubule hyperstabilization effect. When the EC QCM biosensor Δf shift values were normalized by the number of ECs found firmly attached to the QCM surface via trypsin removal and electronic counting, the dose curve was shifted to lower nocodazole concentrations, resulting in a more sensitive drug biosensor. The kinetics of the Δf decrease with increasing nocodazole concentrations measured by the EC QCM biosensor was found to be similar at all drug concentrations and was well fit by a single first-order exponential decay equation. For all nocodazole doses, t0.5 was invariant, averaging t0.5 = 0.83 ± 0.14 h. These data demonstrate that a single dynamic sensing system within the cell, the microtubules, is disrupted by the addition of nocodazole and this process is sensed by the cell QCM biosensor. This interpretation of the data was confirmed by a fluorescence light microscopy investigation of ECs undergoing treatment with increasing nocodazole doses using a fluorescent antibody to α-tubulin. These studies revealed a corresponding loss of the spread morphology of the cells, concomitant with a rearrangement of the extended native microtubules into increasingly large aggregates with the cells eventually lifting from the surface in significant numbers at 50 μM. At 6 μM nocodazole, partial reversibility of the EC QCM biosensor was demonstrated. These results indicate that the EC QCM biosensor can be used to detect and study EC cytoskeleton alterations and dynamics. We suggest the potential of this cellular biosensor for the real-time identification or screening of all classes of biologically active drugs or biological macromolecules that affect cellular attachment and cellular spreading, regardless of their molecular mechanism of action." @default.
- W1996931454 created "2016-06-24" @default.
- W1996931454 creator A5027498069 @default.
- W1996931454 creator A5027734454 @default.
- W1996931454 creator A5032202587 @default.
- W1996931454 creator A5078407137 @default.
- W1996931454 creator A5090785761 @default.
- W1996931454 date "2007-02-01" @default.
- W1996931454 modified "2023-10-10" @default.
- W1996931454 title "A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: Different dynamic responses and energy dissipation effects" @default.
- W1996931454 cites W1967265143 @default.
- W1996931454 cites W1971446783 @default.
- W1996931454 cites W1980729769 @default.
- W1996931454 cites W1988230801 @default.
- W1996931454 cites W1991825044 @default.
- W1996931454 cites W1995764503 @default.
- W1996931454 cites W1998602441 @default.
- W1996931454 cites W2002475826 @default.
- W1996931454 cites W2006254525 @default.
- W1996931454 cites W2009024878 @default.
- W1996931454 cites W2014090748 @default.
- W1996931454 cites W2017320838 @default.
- W1996931454 cites W2017601002 @default.
- W1996931454 cites W2017994716 @default.
- W1996931454 cites W2019550621 @default.
- W1996931454 cites W2020664256 @default.
- W1996931454 cites W2020676385 @default.
- W1996931454 cites W2032610571 @default.
- W1996931454 cites W2053694862 @default.
- W1996931454 cites W2055439074 @default.
- W1996931454 cites W2060034892 @default.
- W1996931454 cites W2063019670 @default.
- W1996931454 cites W2078644234 @default.
- W1996931454 cites W2081875004 @default.
- W1996931454 cites W2083673604 @default.
- W1996931454 cites W2083875384 @default.
- W1996931454 cites W2086085299 @default.
- W1996931454 cites W2088807388 @default.
- W1996931454 cites W2095051718 @default.
- W1996931454 cites W2110339757 @default.
- W1996931454 cites W2117880227 @default.
- W1996931454 cites W2133659782 @default.
- W1996931454 cites W2148153432 @default.
- W1996931454 cites W2156820197 @default.
- W1996931454 cites W2165646112 @default.
- W1996931454 cites W2319962899 @default.
- W1996931454 cites W2599199563 @default.
- W1996931454 doi "https://doi.org/10.1016/j.ab.2006.09.023" @default.
- W1996931454 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17161375" @default.
- W1996931454 hasPublicationYear "2007" @default.
- W1996931454 type Work @default.
- W1996931454 sameAs 1996931454 @default.
- W1996931454 citedByCount "80" @default.
- W1996931454 countsByYear W19969314542012 @default.
- W1996931454 countsByYear W19969314542013 @default.
- W1996931454 countsByYear W19969314542014 @default.
- W1996931454 countsByYear W19969314542015 @default.
- W1996931454 countsByYear W19969314542016 @default.
- W1996931454 countsByYear W19969314542017 @default.
- W1996931454 countsByYear W19969314542018 @default.
- W1996931454 countsByYear W19969314542019 @default.
- W1996931454 countsByYear W19969314542020 @default.
- W1996931454 countsByYear W19969314542021 @default.
- W1996931454 countsByYear W19969314542022 @default.
- W1996931454 countsByYear W19969314542023 @default.
- W1996931454 crossrefType "journal-article" @default.
- W1996931454 hasAuthorship W1996931454A5027498069 @default.
- W1996931454 hasAuthorship W1996931454A5027734454 @default.
- W1996931454 hasAuthorship W1996931454A5032202587 @default.
- W1996931454 hasAuthorship W1996931454A5078407137 @default.
- W1996931454 hasAuthorship W1996931454A5090785761 @default.
- W1996931454 hasConcept C12554922 @default.
- W1996931454 hasConcept C142669718 @default.
- W1996931454 hasConcept C1491633281 @default.
- W1996931454 hasConcept C150394285 @default.
- W1996931454 hasConcept C160756335 @default.
- W1996931454 hasConcept C178790620 @default.
- W1996931454 hasConcept C185592680 @default.
- W1996931454 hasConcept C2779363559 @default.
- W1996931454 hasConcept C55493867 @default.
- W1996931454 hasConcept C86803240 @default.
- W1996931454 hasConcept C9996572 @default.
- W1996931454 hasConceptScore W1996931454C12554922 @default.
- W1996931454 hasConceptScore W1996931454C142669718 @default.
- W1996931454 hasConceptScore W1996931454C1491633281 @default.
- W1996931454 hasConceptScore W1996931454C150394285 @default.
- W1996931454 hasConceptScore W1996931454C160756335 @default.
- W1996931454 hasConceptScore W1996931454C178790620 @default.
- W1996931454 hasConceptScore W1996931454C185592680 @default.
- W1996931454 hasConceptScore W1996931454C2779363559 @default.
- W1996931454 hasConceptScore W1996931454C55493867 @default.
- W1996931454 hasConceptScore W1996931454C86803240 @default.
- W1996931454 hasConceptScore W1996931454C9996572 @default.
- W1996931454 hasIssue "1" @default.
- W1996931454 hasLocation W19969314541 @default.
- W1996931454 hasLocation W19969314542 @default.
- W1996931454 hasOpenAccess W1996931454 @default.
- W1996931454 hasPrimaryLocation W19969314541 @default.