Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997054814> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1997054814 endingPage "243" @default.
- W1997054814 startingPage "227" @default.
- W1997054814 abstract "The artificial neural network technique to model wind damage to forests was examined. The network used in the investigation was a three-layered feed-forward neural network with a backpropagation training-algorithm using a momentum term and flat spot elimination. To yield insights into the performance of the network, a logistic regression model was fitted as a baseline. Two different types of models were set up and analyzed for both approaches. A dichotomous model that predicted the categories “damaged” versus “undamaged” for two different damage thresholds and a multinomial model that predicted the damage in four damage classes. The performance of the network and the logistic regression model was measured using the mean squared sensitivity error. The results of the dichotomous model demonstrate that a feed-forward network is able to better classify forests susceptible to wind damage than a logistic regression model, especially when the frequency of the undamaged and damaged forest stands differs significantly. This study also shows that the network has a higher capacity to identify damaged forest stands, compared to the logistic regression model applied in this investigation. With the specific dataset used in the present study, the proportion of damaged forest stands predicted by the network was between the observed proportion and the proportion predicted by the logistic regression model. The results of the multinomial models showed that both, the statistical model and the neural network were unable to classify all four damage classes but showed a dichotomous behavior in predicting the damage only in the two extreme damage classes. Possibilities to optimize the network performance by using different training algorithms or topologies and principal differences between the two models referring to their specific properties are discussed." @default.
- W1997054814 created "2016-06-24" @default.
- W1997054814 creator A5011744894 @default.
- W1997054814 creator A5026641590 @default.
- W1997054814 creator A5050147790 @default.
- W1997054814 date "2004-07-01" @default.
- W1997054814 modified "2023-09-27" @default.
- W1997054814 title "A neural network approach to identify forest stands susceptible to wind damage" @default.
- W1997054814 cites W1966514946 @default.
- W1997054814 cites W1967581422 @default.
- W1997054814 cites W1982497236 @default.
- W1997054814 cites W1986971127 @default.
- W1997054814 cites W1990948048 @default.
- W1997054814 cites W2007830877 @default.
- W1997054814 cites W2008310793 @default.
- W1997054814 cites W2011736802 @default.
- W1997054814 cites W2036377000 @default.
- W1997054814 cites W2071218269 @default.
- W1997054814 cites W2099589781 @default.
- W1997054814 cites W2151232748 @default.
- W1997054814 cites W2151625023 @default.
- W1997054814 cites W2161666643 @default.
- W1997054814 cites W2168175751 @default.
- W1997054814 cites W2331021314 @default.
- W1997054814 cites W2507001720 @default.
- W1997054814 cites W3022436500 @default.
- W1997054814 cites W4234643200 @default.
- W1997054814 cites W4300402905 @default.
- W1997054814 doi "https://doi.org/10.1016/j.foreco.2004.02.056" @default.
- W1997054814 hasPublicationYear "2004" @default.
- W1997054814 type Work @default.
- W1997054814 sameAs 1997054814 @default.
- W1997054814 citedByCount "56" @default.
- W1997054814 countsByYear W19970548142012 @default.
- W1997054814 countsByYear W19970548142013 @default.
- W1997054814 countsByYear W19970548142014 @default.
- W1997054814 countsByYear W19970548142015 @default.
- W1997054814 countsByYear W19970548142016 @default.
- W1997054814 countsByYear W19970548142019 @default.
- W1997054814 countsByYear W19970548142020 @default.
- W1997054814 countsByYear W19970548142021 @default.
- W1997054814 countsByYear W19970548142022 @default.
- W1997054814 countsByYear W19970548142023 @default.
- W1997054814 crossrefType "journal-article" @default.
- W1997054814 hasAuthorship W1997054814A5011744894 @default.
- W1997054814 hasAuthorship W1997054814A5026641590 @default.
- W1997054814 hasAuthorship W1997054814A5050147790 @default.
- W1997054814 hasConcept C105795698 @default.
- W1997054814 hasConcept C117568660 @default.
- W1997054814 hasConcept C119857082 @default.
- W1997054814 hasConcept C151956035 @default.
- W1997054814 hasConcept C155032097 @default.
- W1997054814 hasConcept C169258074 @default.
- W1997054814 hasConcept C180802074 @default.
- W1997054814 hasConcept C33923547 @default.
- W1997054814 hasConcept C39432304 @default.
- W1997054814 hasConcept C41008148 @default.
- W1997054814 hasConcept C50644808 @default.
- W1997054814 hasConceptScore W1997054814C105795698 @default.
- W1997054814 hasConceptScore W1997054814C117568660 @default.
- W1997054814 hasConceptScore W1997054814C119857082 @default.
- W1997054814 hasConceptScore W1997054814C151956035 @default.
- W1997054814 hasConceptScore W1997054814C155032097 @default.
- W1997054814 hasConceptScore W1997054814C169258074 @default.
- W1997054814 hasConceptScore W1997054814C180802074 @default.
- W1997054814 hasConceptScore W1997054814C33923547 @default.
- W1997054814 hasConceptScore W1997054814C39432304 @default.
- W1997054814 hasConceptScore W1997054814C41008148 @default.
- W1997054814 hasConceptScore W1997054814C50644808 @default.
- W1997054814 hasIssue "2-3" @default.
- W1997054814 hasLocation W19970548141 @default.
- W1997054814 hasOpenAccess W1997054814 @default.
- W1997054814 hasPrimaryLocation W19970548141 @default.
- W1997054814 hasRelatedWork W129344463 @default.
- W1997054814 hasRelatedWork W1678640815 @default.
- W1997054814 hasRelatedWork W2117023567 @default.
- W1997054814 hasRelatedWork W2117718902 @default.
- W1997054814 hasRelatedWork W2367214771 @default.
- W1997054814 hasRelatedWork W3183807417 @default.
- W1997054814 hasRelatedWork W4205583507 @default.
- W1997054814 hasRelatedWork W4245023359 @default.
- W1997054814 hasRelatedWork W4320062479 @default.
- W1997054814 hasRelatedWork W766138655 @default.
- W1997054814 hasVolume "196" @default.
- W1997054814 isParatext "false" @default.
- W1997054814 isRetracted "false" @default.
- W1997054814 magId "1997054814" @default.
- W1997054814 workType "article" @default.