Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997086754> ?p ?o ?g. }
- W1997086754 abstract "Data assimilation is a useful tool in hydrologic and agricultural application studies because of its ability to produce predicted results with high accuracy. However, different data-assimilation methods have different performances for a given application. Although the popular ensemble Kalman filter (EnKF) performs well with Gaussian distribution, the error is difficult to conform to the Gaussian distribution. To take advantage of the EnKF, this study presents a new data-assimilation method, ensemble particle filter (EnPF), which is an integration of the EnKF and the particle filter (PF). This new method was evaluated in comparison with two existing methods (EnKF and PF) through soil temperature predictions. The simple biosphere model (SiB2) and the filters were assessed with observations from the Wudaogou experimental area in the Huaihe River basin, China. Results show that when the time interval increases adequately, all the simulated or assimilated results improve significantly. All of these filters tend to be more stable when the number of particles reaches a certain amount (e.g., 60) or the variance is small (e.g., less than 0.6) in the study. When the number of particles is less than a threshold value (e.g., 30), the advantage among these three methods is not appreciable. The error obtained by EnPF is smaller than that by EnKF and PF; this means that EnPF performs better than EnKF and PF." @default.
- W1997086754 created "2016-06-24" @default.
- W1997086754 creator A5001841492 @default.
- W1997086754 creator A5009601612 @default.
- W1997086754 creator A5042540128 @default.
- W1997086754 creator A5047170949 @default.
- W1997086754 creator A5061551843 @default.
- W1997086754 creator A5070956699 @default.
- W1997086754 creator A5073966541 @default.
- W1997086754 creator A5074339448 @default.
- W1997086754 date "2014-12-01" @default.
- W1997086754 modified "2023-10-05" @default.
- W1997086754 title "Evaluating Ensemble Kalman, Particle, and Ensemble Particle Filters through Soil Temperature Prediction" @default.
- W1997086754 cites W1507471273 @default.
- W1997086754 cites W1605741756 @default.
- W1997086754 cites W1965056090 @default.
- W1997086754 cites W1965295747 @default.
- W1997086754 cites W1969702679 @default.
- W1997086754 cites W1972327193 @default.
- W1997086754 cites W1975891704 @default.
- W1997086754 cites W1979269223 @default.
- W1997086754 cites W1985231179 @default.
- W1997086754 cites W1987308763 @default.
- W1997086754 cites W1994668402 @default.
- W1997086754 cites W1995521669 @default.
- W1997086754 cites W1996079471 @default.
- W1997086754 cites W2001783937 @default.
- W1997086754 cites W2002791311 @default.
- W1997086754 cites W2003376605 @default.
- W1997086754 cites W2006563460 @default.
- W1997086754 cites W2008090122 @default.
- W1997086754 cites W2009104157 @default.
- W1997086754 cites W2010193339 @default.
- W1997086754 cites W2012612458 @default.
- W1997086754 cites W2017156029 @default.
- W1997086754 cites W2024095234 @default.
- W1997086754 cites W2024788599 @default.
- W1997086754 cites W2030432932 @default.
- W1997086754 cites W2039983154 @default.
- W1997086754 cites W2044774372 @default.
- W1997086754 cites W2045254983 @default.
- W1997086754 cites W2045921596 @default.
- W1997086754 cites W2047228190 @default.
- W1997086754 cites W2051061675 @default.
- W1997086754 cites W2059016381 @default.
- W1997086754 cites W2072157461 @default.
- W1997086754 cites W2072406814 @default.
- W1997086754 cites W2073353017 @default.
- W1997086754 cites W2073626328 @default.
- W1997086754 cites W2084693386 @default.
- W1997086754 cites W2091883880 @default.
- W1997086754 cites W2092220788 @default.
- W1997086754 cites W2105934661 @default.
- W1997086754 cites W2108604227 @default.
- W1997086754 cites W2115584735 @default.
- W1997086754 cites W2116422023 @default.
- W1997086754 cites W2134255235 @default.
- W1997086754 cites W2137467781 @default.
- W1997086754 cites W2139117404 @default.
- W1997086754 cites W2153901968 @default.
- W1997086754 cites W2157092315 @default.
- W1997086754 cites W2157098139 @default.
- W1997086754 cites W2175788649 @default.
- W1997086754 cites W2177834209 @default.
- W1997086754 cites W4230472026 @default.
- W1997086754 cites W4242660981 @default.
- W1997086754 doi "https://doi.org/10.1061/(asce)he.1943-5584.0000976" @default.
- W1997086754 hasPublicationYear "2014" @default.
- W1997086754 type Work @default.
- W1997086754 sameAs 1997086754 @default.
- W1997086754 citedByCount "9" @default.
- W1997086754 countsByYear W19970867542014 @default.
- W1997086754 countsByYear W19970867542017 @default.
- W1997086754 countsByYear W19970867542018 @default.
- W1997086754 countsByYear W19970867542020 @default.
- W1997086754 countsByYear W19970867542022 @default.
- W1997086754 countsByYear W19970867542023 @default.
- W1997086754 crossrefType "journal-article" @default.
- W1997086754 hasAuthorship W1997086754A5001841492 @default.
- W1997086754 hasAuthorship W1997086754A5009601612 @default.
- W1997086754 hasAuthorship W1997086754A5042540128 @default.
- W1997086754 hasAuthorship W1997086754A5047170949 @default.
- W1997086754 hasAuthorship W1997086754A5061551843 @default.
- W1997086754 hasAuthorship W1997086754A5070956699 @default.
- W1997086754 hasAuthorship W1997086754A5073966541 @default.
- W1997086754 hasAuthorship W1997086754A5074339448 @default.
- W1997086754 hasConcept C105795698 @default.
- W1997086754 hasConcept C11413529 @default.
- W1997086754 hasConcept C121332964 @default.
- W1997086754 hasConcept C153294291 @default.
- W1997086754 hasConcept C157286648 @default.
- W1997086754 hasConcept C163716315 @default.
- W1997086754 hasConcept C205649164 @default.
- W1997086754 hasConcept C206833254 @default.
- W1997086754 hasConcept C24552861 @default.
- W1997086754 hasConcept C33923547 @default.
- W1997086754 hasConcept C39432304 @default.
- W1997086754 hasConcept C41008148 @default.
- W1997086754 hasConcept C52421305 @default.
- W1997086754 hasConcept C62520636 @default.