Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997175832> ?p ?o ?g. }
- W1997175832 endingPage "132" @default.
- W1997175832 startingPage "113" @default.
- W1997175832 abstract "This paper proposes an adaptive soft sensing method based on selective ensemble of local partial least squares models, referring to as the SELPLS, for quality prediction of nonlinear and time-varying chemical processes. To deal with the process nonlinearity, we partition the process state into local model regions upon which PLS models are constructed, through a statistical hypothesis testing based adaptive localization procedure. Two main delightful advantages of this localization strategy are that, redundant local models can be effectively detected and deleted and the local model set can be easily augmented online without retraining from scratch. In addition, a local model weighting mechanism is proposed to adaptively differentiate the contributions of local models by explicitly quantifying their generalization abilities for the current process dynamics. Finally, the selective ensemble learning strategy combines partial local models instead of all available models through Bayesian inference, which is able to reach a good equilibrium between the prediction bias and variance. The proposed SELPLS based soft sensor is applied to a simulated continuous stirred tank reactor and a real-life industrial sulfur recovery unit. Extensive simulation results demonstrate the effectiveness of the proposed scheme in contrast with several state-of-the-art adaptive soft sensing approaches." @default.
- W1997175832 created "2016-06-24" @default.
- W1997175832 creator A5044970157 @default.
- W1997175832 creator A5078024858 @default.
- W1997175832 date "2015-03-01" @default.
- W1997175832 modified "2023-10-16" @default.
- W1997175832 title "Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models" @default.
- W1997175832 cites W1963701493 @default.
- W1997175832 cites W1967511636 @default.
- W1997175832 cites W1970172697 @default.
- W1997175832 cites W1971385464 @default.
- W1997175832 cites W1977261575 @default.
- W1997175832 cites W1977814896 @default.
- W1997175832 cites W1986548159 @default.
- W1997175832 cites W1998023709 @default.
- W1997175832 cites W2000651380 @default.
- W1997175832 cites W2006881475 @default.
- W1997175832 cites W2009933590 @default.
- W1997175832 cites W2032058792 @default.
- W1997175832 cites W2032136265 @default.
- W1997175832 cites W2032355746 @default.
- W1997175832 cites W2034540270 @default.
- W1997175832 cites W2038573408 @default.
- W1997175832 cites W2039212275 @default.
- W1997175832 cites W2041755017 @default.
- W1997175832 cites W2043133372 @default.
- W1997175832 cites W2052809458 @default.
- W1997175832 cites W2058248416 @default.
- W1997175832 cites W2071453425 @default.
- W1997175832 cites W2072266825 @default.
- W1997175832 cites W2076118331 @default.
- W1997175832 cites W2077496324 @default.
- W1997175832 cites W2077854258 @default.
- W1997175832 cites W2087285421 @default.
- W1997175832 cites W2091706822 @default.
- W1997175832 cites W2092253051 @default.
- W1997175832 cites W2092570679 @default.
- W1997175832 cites W2093204691 @default.
- W1997175832 cites W2094481630 @default.
- W1997175832 cites W2097982640 @default.
- W1997175832 cites W2100128988 @default.
- W1997175832 cites W2117286860 @default.
- W1997175832 cites W2121854064 @default.
- W1997175832 cites W2125419932 @default.
- W1997175832 cites W2126795580 @default.
- W1997175832 cites W2138728394 @default.
- W1997175832 cites W2146915904 @default.
- W1997175832 cites W2147062914 @default.
- W1997175832 cites W2157136988 @default.
- W1997175832 cites W2164762195 @default.
- W1997175832 cites W2164950678 @default.
- W1997175832 cites W2171446500 @default.
- W1997175832 cites W2320749897 @default.
- W1997175832 cites W2327480380 @default.
- W1997175832 cites W2332443565 @default.
- W1997175832 cites W4233870591 @default.
- W1997175832 doi "https://doi.org/10.1016/j.cherd.2015.01.006" @default.
- W1997175832 hasPublicationYear "2015" @default.
- W1997175832 type Work @default.
- W1997175832 sameAs 1997175832 @default.
- W1997175832 citedByCount "109" @default.
- W1997175832 countsByYear W19971758322015 @default.
- W1997175832 countsByYear W19971758322016 @default.
- W1997175832 countsByYear W19971758322017 @default.
- W1997175832 countsByYear W19971758322018 @default.
- W1997175832 countsByYear W19971758322019 @default.
- W1997175832 countsByYear W19971758322020 @default.
- W1997175832 countsByYear W19971758322021 @default.
- W1997175832 countsByYear W19971758322022 @default.
- W1997175832 countsByYear W19971758322023 @default.
- W1997175832 crossrefType "journal-article" @default.
- W1997175832 hasAuthorship W1997175832A5044970157 @default.
- W1997175832 hasAuthorship W1997175832A5078024858 @default.
- W1997175832 hasConcept C111919701 @default.
- W1997175832 hasConcept C11413529 @default.
- W1997175832 hasConcept C115575686 @default.
- W1997175832 hasConcept C119857082 @default.
- W1997175832 hasConcept C119898033 @default.
- W1997175832 hasConcept C121332964 @default.
- W1997175832 hasConcept C126838900 @default.
- W1997175832 hasConcept C134306372 @default.
- W1997175832 hasConcept C149782125 @default.
- W1997175832 hasConcept C154945302 @default.
- W1997175832 hasConcept C158622935 @default.
- W1997175832 hasConcept C159877910 @default.
- W1997175832 hasConcept C177148314 @default.
- W1997175832 hasConcept C183115368 @default.
- W1997175832 hasConcept C183560197 @default.
- W1997175832 hasConcept C22354355 @default.
- W1997175832 hasConcept C33923547 @default.
- W1997175832 hasConcept C41008148 @default.
- W1997175832 hasConcept C45942800 @default.
- W1997175832 hasConcept C48103436 @default.
- W1997175832 hasConcept C62520636 @default.
- W1997175832 hasConcept C71924100 @default.
- W1997175832 hasConcept C98045186 @default.
- W1997175832 hasConceptScore W1997175832C111919701 @default.
- W1997175832 hasConceptScore W1997175832C11413529 @default.