Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997228246> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1997228246 endingPage "188" @default.
- W1997228246 startingPage "179" @default.
- W1997228246 abstract "The existence of a fast algorithm with an <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O Subscript upper A Baseline left-parenthesis n left-parenthesis log n right-parenthesis squared right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>n</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{O_A}(n{(log n)^2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> time complexity for the multiplication of generalized Hilbert matrices with vectors is shown. These matrices are defined by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper B Subscript p Baseline right-parenthesis Subscript i comma j Baseline equals 1 slash left-parenthesis t Subscript i Baseline minus s Subscript j Baseline right-parenthesis Superscript p> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>i</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{({B_p})_{i,j}} = 1/{({t_i} - {s_j})^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=i comma j equals 1 comma ellipsis comma n> <mml:semantics> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>i,j = 1, ldots ,n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p equals 1 comma ellipsis comma q> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>p = 1, ldots ,q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q much-less-than n> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≪<!-- ≪ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>q ll n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t Subscript i> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{t_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s Subscript i> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{s_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are distinct points in the complex plane and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t Subscript i Baseline not-equals s Subscript j> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{t_i} ne {s_j}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=i comma j equals 1 comma ellipsis comma n> <mml:semantics> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>i,j = 1, ldots ,n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The major contribution of the paper is the stable implementation of the algorithm for two important sets of points, the Chebyshev points and the <italic>n</italic>th roots of unity. Such points have applications in the numerical approximation of Cauchy singular integral equations. The time complexity of the algorithm, for these special sets of points, reduces to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O Subscript upper A Baseline left-parenthesis n log n right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{O_A}(nlog n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1997228246 created "2016-06-24" @default.
- W1997228246 creator A5012594534 @default.
- W1997228246 date "1988-01-01" @default.
- W1997228246 modified "2023-09-23" @default.
- W1997228246 title "A fast algorithm for the multiplication of generalized Hilbert matrices with vectors" @default.
- W1997228246 cites W168670374 @default.
- W1997228246 cites W1966591299 @default.
- W1997228246 cites W1975557039 @default.
- W1997228246 cites W1982115588 @default.
- W1997228246 cites W1982829944 @default.
- W1997228246 cites W2003249368 @default.
- W1997228246 cites W2015622992 @default.
- W1997228246 cites W2051201471 @default.
- W1997228246 cites W2068980320 @default.
- W1997228246 cites W2078508588 @default.
- W1997228246 cites W2083206954 @default.
- W1997228246 doi "https://doi.org/10.1090/s0025-5718-1988-0917825-9" @default.
- W1997228246 hasPublicationYear "1988" @default.
- W1997228246 type Work @default.
- W1997228246 sameAs 1997228246 @default.
- W1997228246 citedByCount "58" @default.
- W1997228246 countsByYear W19972282462012 @default.
- W1997228246 countsByYear W19972282462013 @default.
- W1997228246 countsByYear W19972282462014 @default.
- W1997228246 countsByYear W19972282462015 @default.
- W1997228246 countsByYear W19972282462016 @default.
- W1997228246 countsByYear W19972282462017 @default.
- W1997228246 countsByYear W19972282462018 @default.
- W1997228246 countsByYear W19972282462019 @default.
- W1997228246 countsByYear W19972282462020 @default.
- W1997228246 countsByYear W19972282462021 @default.
- W1997228246 countsByYear W19972282462022 @default.
- W1997228246 crossrefType "journal-article" @default.
- W1997228246 hasAuthorship W1997228246A5012594534 @default.
- W1997228246 hasBestOaLocation W19972282461 @default.
- W1997228246 hasConcept C11413529 @default.
- W1997228246 hasConcept C138885662 @default.
- W1997228246 hasConcept C154945302 @default.
- W1997228246 hasConcept C2776542307 @default.
- W1997228246 hasConcept C33923547 @default.
- W1997228246 hasConcept C41008148 @default.
- W1997228246 hasConcept C41895202 @default.
- W1997228246 hasConceptScore W1997228246C11413529 @default.
- W1997228246 hasConceptScore W1997228246C138885662 @default.
- W1997228246 hasConceptScore W1997228246C154945302 @default.
- W1997228246 hasConceptScore W1997228246C2776542307 @default.
- W1997228246 hasConceptScore W1997228246C33923547 @default.
- W1997228246 hasConceptScore W1997228246C41008148 @default.
- W1997228246 hasConceptScore W1997228246C41895202 @default.
- W1997228246 hasIssue "181" @default.
- W1997228246 hasLocation W19972282461 @default.
- W1997228246 hasOpenAccess W1997228246 @default.
- W1997228246 hasPrimaryLocation W19972282461 @default.
- W1997228246 hasRelatedWork W2169996260 @default.
- W1997228246 hasRelatedWork W2357322933 @default.
- W1997228246 hasRelatedWork W2364713684 @default.
- W1997228246 hasRelatedWork W2366383148 @default.
- W1997228246 hasRelatedWork W2376250058 @default.
- W1997228246 hasRelatedWork W2384022429 @default.
- W1997228246 hasRelatedWork W2386767533 @default.
- W1997228246 hasRelatedWork W2389001606 @default.
- W1997228246 hasRelatedWork W2748952813 @default.
- W1997228246 hasRelatedWork W2899084033 @default.
- W1997228246 hasVolume "50" @default.
- W1997228246 isParatext "false" @default.
- W1997228246 isRetracted "false" @default.
- W1997228246 magId "1997228246" @default.
- W1997228246 workType "article" @default.