Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997337568> ?p ?o ?g. }
- W1997337568 endingPage "2352" @default.
- W1997337568 startingPage "2337" @default.
- W1997337568 abstract "Geospatial datasets of forest characteristics are modeled representations of real populations on the ground. The continuous spatial character of such datasets provides an incredible source of information at the landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for addressing current challenges related to climate change, urbanization pressures, and data requirements for monitoring carbon sequestration. However, the effectiveness of these applications is dependent upon the accuracy of the geospatial input datasets. A comprehensive set of robust measures is necessary to provide sufficient information to effectively assess the accuracy of these modeled geospatial datasets being produced. Yet challenges in the availability of reference data, in the appropriateness of assessment methods to dataset use, and in the completeness of assessment methods available have continued to hamper the timely and consistent application of map assessments. In this study we present a suite of assessments that can be used to characterize the accuracy of geospatial datasets of modeled continuous variables—an increasingly common format for modeling such attributes as proportion or probability of forestland as well as more traditionally continuous attributes such as leaf area index and forest biomass. It is a comparative accuracy assessment, in which each modeled dataset is compared to a set of reference data, recognizing both the potential for error in reference data, and probable differences in spatial support between the datasets. When used together, this proposed suite of assessments provides essential information on the type, magnitude, frequency and location of errors in each dataset. The assessments presented depend upon reference data with large sample sizes. The U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA) database is introduced as an available reference dataset of sufficient sampling intensity to take full advantage of these assessments and facilitate their prompt application after modeled datasets are developed. We illustrate the application of this suite of assessments with two modeled datasets of forest biomass, in Minnesota and New York. The information provided by this suite of assessments substantially improves a user's ability to apply modeled geospatial datasets effectively and to assess the relative strengths and weaknesses of multiple datasets depicting the same forest characteristic." @default.
- W1997337568 created "2016-06-24" @default.
- W1997337568 creator A5002024980 @default.
- W1997337568 creator A5026511607 @default.
- W1997337568 creator A5079881639 @default.
- W1997337568 creator A5085856357 @default.
- W1997337568 date "2010-10-01" @default.
- W1997337568 modified "2023-09-27" @default.
- W1997337568 title "An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data" @default.
- W1997337568 cites W1978673438 @default.
- W1997337568 cites W1980811118 @default.
- W1997337568 cites W1996995433 @default.
- W1997337568 cites W2001747857 @default.
- W1997337568 cites W2010884258 @default.
- W1997337568 cites W2024689500 @default.
- W1997337568 cites W2027699401 @default.
- W1997337568 cites W2040996383 @default.
- W1997337568 cites W2045730031 @default.
- W1997337568 cites W2053095258 @default.
- W1997337568 cites W2061017548 @default.
- W1997337568 cites W2071366264 @default.
- W1997337568 cites W2075117618 @default.
- W1997337568 cites W2085074852 @default.
- W1997337568 cites W2092208879 @default.
- W1997337568 cites W2094534263 @default.
- W1997337568 cites W2102662878 @default.
- W1997337568 cites W2106066733 @default.
- W1997337568 cites W2111286455 @default.
- W1997337568 cites W2114828048 @default.
- W1997337568 cites W2116065099 @default.
- W1997337568 cites W2122203277 @default.
- W1997337568 cites W2122782283 @default.
- W1997337568 cites W2126323182 @default.
- W1997337568 cites W2130018701 @default.
- W1997337568 cites W2133945370 @default.
- W1997337568 cites W2135545639 @default.
- W1997337568 cites W2136369781 @default.
- W1997337568 cites W2139144836 @default.
- W1997337568 cites W2144819008 @default.
- W1997337568 cites W2150508029 @default.
- W1997337568 cites W2161048175 @default.
- W1997337568 cites W2161846988 @default.
- W1997337568 cites W2180682969 @default.
- W1997337568 cites W3120380988 @default.
- W1997337568 cites W4236137412 @default.
- W1997337568 cites W4253454537 @default.
- W1997337568 doi "https://doi.org/10.1016/j.rse.2010.05.010" @default.
- W1997337568 hasPublicationYear "2010" @default.
- W1997337568 type Work @default.
- W1997337568 sameAs 1997337568 @default.
- W1997337568 citedByCount "77" @default.
- W1997337568 countsByYear W19973375682012 @default.
- W1997337568 countsByYear W19973375682013 @default.
- W1997337568 countsByYear W19973375682014 @default.
- W1997337568 countsByYear W19973375682015 @default.
- W1997337568 countsByYear W19973375682016 @default.
- W1997337568 countsByYear W19973375682017 @default.
- W1997337568 countsByYear W19973375682018 @default.
- W1997337568 countsByYear W19973375682019 @default.
- W1997337568 countsByYear W19973375682020 @default.
- W1997337568 countsByYear W19973375682021 @default.
- W1997337568 countsByYear W19973375682022 @default.
- W1997337568 countsByYear W19973375682023 @default.
- W1997337568 crossrefType "journal-article" @default.
- W1997337568 hasAuthorship W1997337568A5002024980 @default.
- W1997337568 hasAuthorship W1997337568A5026511607 @default.
- W1997337568 hasAuthorship W1997337568A5079881639 @default.
- W1997337568 hasAuthorship W1997337568A5085856357 @default.
- W1997337568 hasConcept C119857082 @default.
- W1997337568 hasConcept C124101348 @default.
- W1997337568 hasConcept C159620131 @default.
- W1997337568 hasConcept C166957645 @default.
- W1997337568 hasConcept C169258074 @default.
- W1997337568 hasConcept C177264268 @default.
- W1997337568 hasConcept C199360897 @default.
- W1997337568 hasConcept C205649164 @default.
- W1997337568 hasConcept C41008148 @default.
- W1997337568 hasConcept C62649853 @default.
- W1997337568 hasConcept C79581498 @default.
- W1997337568 hasConcept C9770341 @default.
- W1997337568 hasConceptScore W1997337568C119857082 @default.
- W1997337568 hasConceptScore W1997337568C124101348 @default.
- W1997337568 hasConceptScore W1997337568C159620131 @default.
- W1997337568 hasConceptScore W1997337568C166957645 @default.
- W1997337568 hasConceptScore W1997337568C169258074 @default.
- W1997337568 hasConceptScore W1997337568C177264268 @default.
- W1997337568 hasConceptScore W1997337568C199360897 @default.
- W1997337568 hasConceptScore W1997337568C205649164 @default.
- W1997337568 hasConceptScore W1997337568C41008148 @default.
- W1997337568 hasConceptScore W1997337568C62649853 @default.
- W1997337568 hasConceptScore W1997337568C79581498 @default.
- W1997337568 hasConceptScore W1997337568C9770341 @default.
- W1997337568 hasIssue "10" @default.
- W1997337568 hasLocation W19973375681 @default.
- W1997337568 hasOpenAccess W1997337568 @default.
- W1997337568 hasPrimaryLocation W19973375681 @default.
- W1997337568 hasRelatedWork W109218057 @default.
- W1997337568 hasRelatedWork W1969916933 @default.