Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997366921> ?p ?o ?g. }
- W1997366921 endingPage "23240" @default.
- W1997366921 startingPage "23233" @default.
- W1997366921 abstract "Members of the cysteine- and glycine-rich protein family (CRP1, CRP2, and CRP3) contain two zinc-binding LIM domains, LIM1 (amino-terminal) and LIM2 (carboxyl-terminal), and are implicated in diverse cellular processes linked to differentiation, growth control, and pathogenesis. Here we report the solution structure of full-length recombinant quail CRP2 as determined by multi-dimensional triple-resonance NMR spectroscopy. The structural analysis revealed that the global fold of the two LIM domains in the context of the full-length protein is identical to the recently determined solution structures of the isolated individual LIM domains of quail CRP2. There is no preference in relative spatial orientation of the two domains. This supports the view that the two LIM domains are independent structural and presumably functional modules of CRP proteins. This is also reflected by the dynamic properties of CRP2 probed by15N relaxation values (T 1,T 2, and nuclear Overhauser effect). A model-free analysis revealed local variations in mobility along the backbone of the two LIM domains in the native protein, similar to those observed for the isolated domains. Interestingly, fast and slow motions observed in the 58-amino acid linker region between the two LIM domains endow extensive motional freedom to CRP2. The dynamic analysis indicates independent backbone mobility of the two LIM domains and rules out correlated LIM domain motion in full-length CRP2. The finding that the LIM domains in a protein encompassing multiple LIM motifs are structurally and dynamically independent from each other supports the notion that these proteins may function as adaptor molecules arranging two or more protein constituents into a macromolecular complex. Members of the cysteine- and glycine-rich protein family (CRP1, CRP2, and CRP3) contain two zinc-binding LIM domains, LIM1 (amino-terminal) and LIM2 (carboxyl-terminal), and are implicated in diverse cellular processes linked to differentiation, growth control, and pathogenesis. Here we report the solution structure of full-length recombinant quail CRP2 as determined by multi-dimensional triple-resonance NMR spectroscopy. The structural analysis revealed that the global fold of the two LIM domains in the context of the full-length protein is identical to the recently determined solution structures of the isolated individual LIM domains of quail CRP2. There is no preference in relative spatial orientation of the two domains. This supports the view that the two LIM domains are independent structural and presumably functional modules of CRP proteins. This is also reflected by the dynamic properties of CRP2 probed by15N relaxation values (T 1,T 2, and nuclear Overhauser effect). A model-free analysis revealed local variations in mobility along the backbone of the two LIM domains in the native protein, similar to those observed for the isolated domains. Interestingly, fast and slow motions observed in the 58-amino acid linker region between the two LIM domains endow extensive motional freedom to CRP2. The dynamic analysis indicates independent backbone mobility of the two LIM domains and rules out correlated LIM domain motion in full-length CRP2. The finding that the LIM domains in a protein encompassing multiple LIM motifs are structurally and dynamically independent from each other supports the notion that these proteins may function as adaptor molecules arranging two or more protein constituents into a macromolecular complex. cysteine- and glycine-rich protein specific double zinc finger domain amino-terminal LIM domain of CRP protein carboxyl-terminal LIM domain of CRP protein gene encoding CRP protein polymerase chain reaction nuclear Overhauser effect heteronuclear single-quantum correlation spectroscopy longitudinal relaxation time transverse relaxation time amide proton to nitrogen to carbonyl correlation proton-carbon-carbon-proton correlation using carbon total correlated spectroscopy amide proton to nitrogen to α/β carbon correlation α/β proton to α/β carbon (via carbonyl carbon) to nitrogen to amide proton correlation selective decoupling using crafted excitation muscle LIM protein time-proportional phase incrementation. The cysteine- and glycine-rich CRP1 proteins are encoded by a gene family (1Weiskirchen R. Pino J.D. Macalma T. Bister K. Beckerle M.C. J. Biol. Chem. 1995; 270: 28946-28954Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar) that includes three related but distinct members: theCSRP1 gene originally identified in human (2Liebhaber S.A. Emery J.G. Urbanek M. Wang X. Cooke N.E. Nucleic Acids Res. 1990; 18: 3871-3879Crossref PubMed Scopus (75) Google Scholar), theCSRP2 gene first isolated from quail (3Weiskirchen R. Bister K. Oncogene. 1993; 8: 2317-2324PubMed Google Scholar), and theCSRP3 gene originally cloned from rat and chicken (4Arber S. Halder G. Caroni P. Cell. 1994; 79: 221-231Abstract Full Text PDF PubMed Scopus (391) Google Scholar). The CRP1, CRP2, and CRP3 proteins contain 192–194 amino acid residues, display overall amino acid sequence identities ranging from 63 to 79%, and share identical domain topologies (1Weiskirchen R. Pino J.D. Macalma T. Bister K. Beckerle M.C. J. Biol. Chem. 1995; 270: 28946-28954Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar, 5Weiskirchen R. Erdel M. Utermann G. Bister K. Genomics. 1997; 44: 83-93Crossref PubMed Scopus (31) Google Scholar). They contain two LIM motifs in their amino acid sequences, an amino-terminal LIM1 domain, and a carboxyl-terminal LIM2 domain, each followed by a 12-amino acid glycine-rich repeat. The LIM motif occurs in single or multiple copies in many proteins of diverse regulatory functions and is defined by two cysteine-rich zinc finger structures separated by a 2-amino acid spacer (6Sanchez-Garcia I. Rabbitts T.H. Trends Genet. 1994; 10: 315-320Abstract Full Text PDF PubMed Scopus (316) Google Scholar, 7Taira M. Evrard J.-L. Steinmetz A. Dawid I.B. Trends Genet. 1995; 11: 431-432Abstract Full Text PDF PubMed Scopus (67) Google Scholar). In CRP proteins, it conforms to the 52-amino acid consensus sequence CX 2CX 17HX 2CX 2CX 2CX 17CX 2C (1Weiskirchen R. Pino J.D. Macalma T. Bister K. Beckerle M.C. J. Biol. Chem. 1995; 270: 28946-28954Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar, 5Weiskirchen R. Erdel M. Utermann G. Bister K. Genomics. 1997; 44: 83-93Crossref PubMed Scopus (31) Google Scholar). Each CRP LIM motif contains two tetrahedral Zn(II)-coordinating sites of the CCHC and CCCC type, respectively (8Michelsen J.W. Schmeichel K.L. Beckerle M.C. Winge D.R. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 4404-4408Crossref PubMed Scopus (132) Google Scholar, 9Michelsen J.W. Sewell A.K. Louis H.A. Olsen J.I. Davis D.R. Winge D.R. Beckerle M.C. J. Biol. Chem. 1994; 269: 11108-11113Abstract Full Text PDF PubMed Google Scholar, 10Kosa J.L. Michelsen J.W. Louis H.A. Olsen J.I. Davis D.R. Beckerle M.C. Winge D.R. Biochemistry. 1994; 33: 468-477Crossref PubMed Scopus (82) Google Scholar). CRP proteins and their LIM domains are implicated in specific protein-protein interactions, in particular involving cytoskeletal components like zyxin, actin, and α-actinin (11Schmeichel K.L. Beckerle M.C. Cell. 1994; 79: 211-219Abstract Full Text PDF PubMed Scopus (408) Google Scholar, 12Arber S. Caroni P. Genes Dev. 1996; 10: 289-300Crossref PubMed Scopus (199) Google Scholar, 13Schmeichel K.L. Beckerle M.C. Mol. Biol. Cell. 1997; 8: 219-230Crossref PubMed Scopus (89) Google Scholar, 14Louis H.A. Pino J.D. Schmeichel K.L. Pomiès P. Beckerle M.C. J. Biol. Chem. 1997; 272: 27484-27491Abstract Full Text Full Text PDF PubMed Scopus (168) Google Scholar, 15Pomiès P. Louis H.A. Beckerle M.C. J. Cell Biol. 1997; 139: 157-168Crossref PubMed Scopus (115) Google Scholar). On the other hand, specific nuclear interactions of CRP3 (also termed MLP for muscle LIM protein) with the myogenic basic helix-loop-helix (bHLH) transcription factor MyoD were reported to enhance the DNA-binding activity of the MyoD·E47 transcription factor complex (16Kong Y. Flick M.J. Kudla A.J. Konieczny S.E. Mol. Cell. Biol. 1997; 17: 4750-4760Crossref PubMed Scopus (238) Google Scholar). Although the molecular function of CRP proteins and the nature of their cellular targets have not been rigorously defined yet, there is increasing evidence that theCSRP genes and their protein products play a key role in regulatory processes linked to cell growth and differentiation. For example, CRP3/MLP was identified as a positive regulator of myogenesis (4Arber S. Halder G. Caroni P. Cell. 1994; 79: 221-231Abstract Full Text PDF PubMed Scopus (391) Google Scholar), and CSRP3-deficient mice were shown to exhibit a disruption of cardiac cytoarchitectural organization and heart failure (17Arber S. Hunter J.J. Ross Jr., J. Hongo M. Sansig G. Borg J. Perriard J.-C. Chien K.R. Caroni P. Cell. 1997; 88: 393-403Abstract Full Text Full Text PDF PubMed Scopus (697) Google Scholar).Three-dimensional solution structures have been determined for recombinant polypeptides containing the carboxyl-terminal LIM2 domains of chicken CRP1 (18Perez-Alvarado G.C. Miles C. Michelsen J.W. Louis H.A. Winge D.R. Beckerle M.C. Summers M.F. Nat. Struct. Biol. 1994; 1: 388-398Crossref PubMed Scopus (137) Google Scholar) or quail CRP2 (19Konrat R. Weiskirchen R. Kräutler B. Bister K. J. Biol. Chem. 1997; 272: 12001-12007Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar), the amino-terminal LIM1 domain of quail CRP2 (20Kontaxis G. Konrat R. Kräutler B. Weiskirchen R. Bister K. Biochemistry. 1998; 37: 7127-7134Crossref PubMed Scopus (28) Google Scholar), or the single LIM domain of the cysteine-rich intestinal protein, CRIP (21Perez-Alvarado G.C. Kosa J.L. Louis H.A. Beckerle M.C. Winge D.R. Summers M.F. J. Mol. Biol. 1996; 257: 153-174Crossref PubMed Scopus (52) Google Scholar). These studies defined a highly conserved general LIM domain protein fold and also showed that the structure of the CCCC subdomain is strikingly similar to that of the DNA-interactive CCCC zinc fingers of the GATA-1 and steroid hormone receptor DNA binding domains determined previously (22Omichinski J.G. Clore G.M. Schaad O. Felsenfeld G. Trainor C. Appella E. Stahl S.J. Gronenborn A.M. Science. 1993; 261: 438-446Crossref PubMed Scopus (406) Google Scholar, 23Luisi B.F. Xu W.X. Otwinowski Z. Freedman L.P. Yamamoto K.R. Sigler P.B. Nature. 1991; 352: 497-505Crossref PubMed Scopus (1218) Google Scholar). So far, no structure determination has been performed for a native LIM protein containing more than one LIM domain, and it has not been assessed yet whether the global fold of an isolated individual LIM domain remains unchanged in the context of a full-sized protein containing multiple LIM domains. Furthermore, the intriguing question of whether the LIM domains within a protein containing multiple copies of this motif have a preferential spatial orientation to each other or even display distinct direct interactions has not been addressed yet.Here we describe the solution structure of uniformly13C/15N-labeled full-length quail CRP2, representing the first structure determination for a protein containing multiple LIM domains, and compare it to the structures of the isolated amino-terminal LIM1 and carboxyl-terminal LIM2 domains from the same protein. Furthermore, the backbone dynamics of CRP2 were investigated using two-dimensional 15N-1H NMR methods to determine steady-state 1H-15N NOE values and the T 1 and T 2 relaxation times of 15N magnetization. The results provide unequivocal evidence that the two LIM domains of CRP2 are autonomously folded structural modules with independent backbone mobility and no preference in relative spatial orientation. The cysteine- and glycine-rich CRP1 proteins are encoded by a gene family (1Weiskirchen R. Pino J.D. Macalma T. Bister K. Beckerle M.C. J. Biol. Chem. 1995; 270: 28946-28954Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar) that includes three related but distinct members: theCSRP1 gene originally identified in human (2Liebhaber S.A. Emery J.G. Urbanek M. Wang X. Cooke N.E. Nucleic Acids Res. 1990; 18: 3871-3879Crossref PubMed Scopus (75) Google Scholar), theCSRP2 gene first isolated from quail (3Weiskirchen R. Bister K. Oncogene. 1993; 8: 2317-2324PubMed Google Scholar), and theCSRP3 gene originally cloned from rat and chicken (4Arber S. Halder G. Caroni P. Cell. 1994; 79: 221-231Abstract Full Text PDF PubMed Scopus (391) Google Scholar). The CRP1, CRP2, and CRP3 proteins contain 192–194 amino acid residues, display overall amino acid sequence identities ranging from 63 to 79%, and share identical domain topologies (1Weiskirchen R. Pino J.D. Macalma T. Bister K. Beckerle M.C. J. Biol. Chem. 1995; 270: 28946-28954Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar, 5Weiskirchen R. Erdel M. Utermann G. Bister K. Genomics. 1997; 44: 83-93Crossref PubMed Scopus (31) Google Scholar). They contain two LIM motifs in their amino acid sequences, an amino-terminal LIM1 domain, and a carboxyl-terminal LIM2 domain, each followed by a 12-amino acid glycine-rich repeat. The LIM motif occurs in single or multiple copies in many proteins of diverse regulatory functions and is defined by two cysteine-rich zinc finger structures separated by a 2-amino acid spacer (6Sanchez-Garcia I. Rabbitts T.H. Trends Genet. 1994; 10: 315-320Abstract Full Text PDF PubMed Scopus (316) Google Scholar, 7Taira M. Evrard J.-L. Steinmetz A. Dawid I.B. Trends Genet. 1995; 11: 431-432Abstract Full Text PDF PubMed Scopus (67) Google Scholar). In CRP proteins, it conforms to the 52-amino acid consensus sequence CX 2CX 17HX 2CX 2CX 2CX 17CX 2C (1Weiskirchen R. Pino J.D. Macalma T. Bister K. Beckerle M.C. J. Biol. Chem. 1995; 270: 28946-28954Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar, 5Weiskirchen R. Erdel M. Utermann G. Bister K. Genomics. 1997; 44: 83-93Crossref PubMed Scopus (31) Google Scholar). Each CRP LIM motif contains two tetrahedral Zn(II)-coordinating sites of the CCHC and CCCC type, respectively (8Michelsen J.W. Schmeichel K.L. Beckerle M.C. Winge D.R. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 4404-4408Crossref PubMed Scopus (132) Google Scholar, 9Michelsen J.W. Sewell A.K. Louis H.A. Olsen J.I. Davis D.R. Winge D.R. Beckerle M.C. J. Biol. Chem. 1994; 269: 11108-11113Abstract Full Text PDF PubMed Google Scholar, 10Kosa J.L. Michelsen J.W. Louis H.A. Olsen J.I. Davis D.R. Beckerle M.C. Winge D.R. Biochemistry. 1994; 33: 468-477Crossref PubMed Scopus (82) Google Scholar). CRP proteins and their LIM domains are implicated in specific protein-protein interactions, in particular involving cytoskeletal components like zyxin, actin, and α-actinin (11Schmeichel K.L. Beckerle M.C. Cell. 1994; 79: 211-219Abstract Full Text PDF PubMed Scopus (408) Google Scholar, 12Arber S. Caroni P. Genes Dev. 1996; 10: 289-300Crossref PubMed Scopus (199) Google Scholar, 13Schmeichel K.L. Beckerle M.C. Mol. Biol. Cell. 1997; 8: 219-230Crossref PubMed Scopus (89) Google Scholar, 14Louis H.A. Pino J.D. Schmeichel K.L. Pomiès P. Beckerle M.C. J. Biol. Chem. 1997; 272: 27484-27491Abstract Full Text Full Text PDF PubMed Scopus (168) Google Scholar, 15Pomiès P. Louis H.A. Beckerle M.C. J. Cell Biol. 1997; 139: 157-168Crossref PubMed Scopus (115) Google Scholar). On the other hand, specific nuclear interactions of CRP3 (also termed MLP for muscle LIM protein) with the myogenic basic helix-loop-helix (bHLH) transcription factor MyoD were reported to enhance the DNA-binding activity of the MyoD·E47 transcription factor complex (16Kong Y. Flick M.J. Kudla A.J. Konieczny S.E. Mol. Cell. Biol. 1997; 17: 4750-4760Crossref PubMed Scopus (238) Google Scholar). Although the molecular function of CRP proteins and the nature of their cellular targets have not been rigorously defined yet, there is increasing evidence that theCSRP genes and their protein products play a key role in regulatory processes linked to cell growth and differentiation. For example, CRP3/MLP was identified as a positive regulator of myogenesis (4Arber S. Halder G. Caroni P. Cell. 1994; 79: 221-231Abstract Full Text PDF PubMed Scopus (391) Google Scholar), and CSRP3-deficient mice were shown to exhibit a disruption of cardiac cytoarchitectural organization and heart failure (17Arber S. Hunter J.J. Ross Jr., J. Hongo M. Sansig G. Borg J. Perriard J.-C. Chien K.R. Caroni P. Cell. 1997; 88: 393-403Abstract Full Text Full Text PDF PubMed Scopus (697) Google Scholar). Three-dimensional solution structures have been determined for recombinant polypeptides containing the carboxyl-terminal LIM2 domains of chicken CRP1 (18Perez-Alvarado G.C. Miles C. Michelsen J.W. Louis H.A. Winge D.R. Beckerle M.C. Summers M.F. Nat. Struct. Biol. 1994; 1: 388-398Crossref PubMed Scopus (137) Google Scholar) or quail CRP2 (19Konrat R. Weiskirchen R. Kräutler B. Bister K. J. Biol. Chem. 1997; 272: 12001-12007Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar), the amino-terminal LIM1 domain of quail CRP2 (20Kontaxis G. Konrat R. Kräutler B. Weiskirchen R. Bister K. Biochemistry. 1998; 37: 7127-7134Crossref PubMed Scopus (28) Google Scholar), or the single LIM domain of the cysteine-rich intestinal protein, CRIP (21Perez-Alvarado G.C. Kosa J.L. Louis H.A. Beckerle M.C. Winge D.R. Summers M.F. J. Mol. Biol. 1996; 257: 153-174Crossref PubMed Scopus (52) Google Scholar). These studies defined a highly conserved general LIM domain protein fold and also showed that the structure of the CCCC subdomain is strikingly similar to that of the DNA-interactive CCCC zinc fingers of the GATA-1 and steroid hormone receptor DNA binding domains determined previously (22Omichinski J.G. Clore G.M. Schaad O. Felsenfeld G. Trainor C. Appella E. Stahl S.J. Gronenborn A.M. Science. 1993; 261: 438-446Crossref PubMed Scopus (406) Google Scholar, 23Luisi B.F. Xu W.X. Otwinowski Z. Freedman L.P. Yamamoto K.R. Sigler P.B. Nature. 1991; 352: 497-505Crossref PubMed Scopus (1218) Google Scholar). So far, no structure determination has been performed for a native LIM protein containing more than one LIM domain, and it has not been assessed yet whether the global fold of an isolated individual LIM domain remains unchanged in the context of a full-sized protein containing multiple LIM domains. Furthermore, the intriguing question of whether the LIM domains within a protein containing multiple copies of this motif have a preferential spatial orientation to each other or even display distinct direct interactions has not been addressed yet. Here we describe the solution structure of uniformly13C/15N-labeled full-length quail CRP2, representing the first structure determination for a protein containing multiple LIM domains, and compare it to the structures of the isolated amino-terminal LIM1 and carboxyl-terminal LIM2 domains from the same protein. Furthermore, the backbone dynamics of CRP2 were investigated using two-dimensional 15N-1H NMR methods to determine steady-state 1H-15N NOE values and the T 1 and T 2 relaxation times of 15N magnetization. The results provide unequivocal evidence that the two LIM domains of CRP2 are autonomously folded structural modules with independent backbone mobility and no preference in relative spatial orientation. We thank F. Lottspeich (Max-Planck-Institute of Biochemistry, Martinsried, Germany) for protein sequencing, N. D. Farrow (DuPont Merck, Wilmington, DE) for NMR software, and S. Weiskirchen for excellent technical assistance." @default.
- W1997366921 created "2016-06-24" @default.
- W1997366921 creator A5037393542 @default.
- W1997366921 creator A5055719124 @default.
- W1997366921 creator A5073612482 @default.
- W1997366921 creator A5077702058 @default.
- W1997366921 date "1998-09-01" @default.
- W1997366921 modified "2023-10-02" @default.
- W1997366921 title "Structure of Cysteine- and Glycine-rich Protein CRP2" @default.
- W1997366921 cites W1188919047 @default.
- W1997366921 cites W1501992416 @default.
- W1997366921 cites W1873199501 @default.
- W1997366921 cites W1977891434 @default.
- W1997366921 cites W1977920448 @default.
- W1997366921 cites W1979609931 @default.
- W1997366921 cites W1984240649 @default.
- W1997366921 cites W1986359974 @default.
- W1997366921 cites W1986523034 @default.
- W1997366921 cites W1994057597 @default.
- W1997366921 cites W2000054590 @default.
- W1997366921 cites W2002195659 @default.
- W1997366921 cites W2003458079 @default.
- W1997366921 cites W2003589347 @default.
- W1997366921 cites W2006731694 @default.
- W1997366921 cites W2007823692 @default.
- W1997366921 cites W2010035436 @default.
- W1997366921 cites W2011115644 @default.
- W1997366921 cites W201555988 @default.
- W1997366921 cites W2022496873 @default.
- W1997366921 cites W2023702665 @default.
- W1997366921 cites W2024027456 @default.
- W1997366921 cites W2025717854 @default.
- W1997366921 cites W2029676157 @default.
- W1997366921 cites W2032881439 @default.
- W1997366921 cites W2034316142 @default.
- W1997366921 cites W2036754849 @default.
- W1997366921 cites W2037424747 @default.
- W1997366921 cites W2041781038 @default.
- W1997366921 cites W2046825058 @default.
- W1997366921 cites W2050018959 @default.
- W1997366921 cites W2053590485 @default.
- W1997366921 cites W2056400745 @default.
- W1997366921 cites W2066661634 @default.
- W1997366921 cites W2067041186 @default.
- W1997366921 cites W2067236137 @default.
- W1997366921 cites W2068227670 @default.
- W1997366921 cites W2068671266 @default.
- W1997366921 cites W2069734146 @default.
- W1997366921 cites W2071390801 @default.
- W1997366921 cites W2080717344 @default.
- W1997366921 cites W2082449450 @default.
- W1997366921 cites W2088430517 @default.
- W1997366921 cites W2088848851 @default.
- W1997366921 cites W2090693744 @default.
- W1997366921 cites W2109719547 @default.
- W1997366921 cites W2117611390 @default.
- W1997366921 cites W2125714022 @default.
- W1997366921 cites W2129879061 @default.
- W1997366921 cites W2130313772 @default.
- W1997366921 cites W2138304761 @default.
- W1997366921 cites W2149277975 @default.
- W1997366921 cites W2150496578 @default.
- W1997366921 cites W225911406 @default.
- W1997366921 cites W4242009576 @default.
- W1997366921 cites W4251673379 @default.
- W1997366921 cites W4293247451 @default.
- W1997366921 doi "https://doi.org/10.1074/jbc.273.36.23233" @default.
- W1997366921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9722554" @default.
- W1997366921 hasPublicationYear "1998" @default.
- W1997366921 type Work @default.
- W1997366921 sameAs 1997366921 @default.
- W1997366921 citedByCount "42" @default.
- W1997366921 countsByYear W19973669212013 @default.
- W1997366921 countsByYear W19973669212015 @default.
- W1997366921 countsByYear W19973669212016 @default.
- W1997366921 countsByYear W19973669212017 @default.
- W1997366921 countsByYear W19973669212021 @default.
- W1997366921 crossrefType "journal-article" @default.
- W1997366921 hasAuthorship W1997366921A5037393542 @default.
- W1997366921 hasAuthorship W1997366921A5055719124 @default.
- W1997366921 hasAuthorship W1997366921A5073612482 @default.
- W1997366921 hasAuthorship W1997366921A5077702058 @default.
- W1997366921 hasBestOaLocation W19973669211 @default.
- W1997366921 hasConcept C181199279 @default.
- W1997366921 hasConcept C185592680 @default.
- W1997366921 hasConcept C2777756961 @default.
- W1997366921 hasConcept C2779201268 @default.
- W1997366921 hasConcept C515207424 @default.
- W1997366921 hasConcept C55493867 @default.
- W1997366921 hasConceptScore W1997366921C181199279 @default.
- W1997366921 hasConceptScore W1997366921C185592680 @default.
- W1997366921 hasConceptScore W1997366921C2777756961 @default.
- W1997366921 hasConceptScore W1997366921C2779201268 @default.
- W1997366921 hasConceptScore W1997366921C515207424 @default.
- W1997366921 hasConceptScore W1997366921C55493867 @default.
- W1997366921 hasIssue "36" @default.
- W1997366921 hasLocation W19973669211 @default.
- W1997366921 hasOpenAccess W1997366921 @default.