Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997374429> ?p ?o ?g. }
- W1997374429 endingPage "2508" @default.
- W1997374429 startingPage "2498" @default.
- W1997374429 abstract "A mathematical model is an important tool for analysis and design of fuel cell stacks and systems. In general, the complete description of fuel cells requires an electrochemical model to predict their electrical characteristics, i.e., cell voltage and current density. However, obtaining the electrochemical model is quite a difficult and complicated task as it involves various operational, structural and electrochemical reaction parameters. In this study, a neural network model was first proposed to predict the electrochemical characteristics of solid oxide fuel cell (SOFC). Various NN structures were trained based on the back-propagation feed-forward approach. The results showed that the NN with optimal structure reliably provides a good estimation of fuel cell electrical characteristics. Then, a neural network hybrid model of a direct internal reforming SOFC, combining mass conservation equations with the NN model, was developed to determine the distributions of gaseous components in fuel and air channels of SOFC as well as the performance of the SOFC in terms of power density and fuel cell efficiency. The effects of various key parameters, e.g., temperature, pressure, steam to carbon ratio, degree of pre-reforming, and inlet fuel flow rate on the SOFC performance under steady-state and isothermal conditions were also investigated. A combination of the first principle model and NN presents a significant advantage of predicting the SOFC performance with accuracy and less computational time." @default.
- W1997374429 created "2016-06-24" @default.
- W1997374429 creator A5010850124 @default.
- W1997374429 creator A5029614286 @default.
- W1997374429 creator A5046497335 @default.
- W1997374429 creator A5061253651 @default.
- W1997374429 creator A5087427931 @default.
- W1997374429 creator A5089324299 @default.
- W1997374429 date "2012-02-01" @default.
- W1997374429 modified "2023-10-16" @default.
- W1997374429 title "Neural network hybrid model of a direct internal reforming solid oxide fuel cell" @default.
- W1997374429 cites W1964307491 @default.
- W1997374429 cites W1964466273 @default.
- W1997374429 cites W1966256273 @default.
- W1997374429 cites W1970203049 @default.
- W1997374429 cites W1970786908 @default.
- W1997374429 cites W1975122320 @default.
- W1997374429 cites W1975749768 @default.
- W1997374429 cites W1982159887 @default.
- W1997374429 cites W2009712046 @default.
- W1997374429 cites W2010726064 @default.
- W1997374429 cites W2011103043 @default.
- W1997374429 cites W2027337119 @default.
- W1997374429 cites W2028998021 @default.
- W1997374429 cites W2041016931 @default.
- W1997374429 cites W2041898131 @default.
- W1997374429 cites W2042865119 @default.
- W1997374429 cites W2044077477 @default.
- W1997374429 cites W2052919858 @default.
- W1997374429 cites W2056286168 @default.
- W1997374429 cites W2056496970 @default.
- W1997374429 cites W2064569467 @default.
- W1997374429 cites W2066477896 @default.
- W1997374429 cites W2068503546 @default.
- W1997374429 cites W2070804523 @default.
- W1997374429 cites W2070937452 @default.
- W1997374429 cites W2083396291 @default.
- W1997374429 cites W2085268047 @default.
- W1997374429 cites W2087226031 @default.
- W1997374429 cites W2122099868 @default.
- W1997374429 cites W2122178505 @default.
- W1997374429 cites W2128960091 @default.
- W1997374429 cites W2129662472 @default.
- W1997374429 cites W2140728346 @default.
- W1997374429 cites W2168384775 @default.
- W1997374429 doi "https://doi.org/10.1016/j.ijhydene.2011.10.051" @default.
- W1997374429 hasPublicationYear "2012" @default.
- W1997374429 type Work @default.
- W1997374429 sameAs 1997374429 @default.
- W1997374429 citedByCount "34" @default.
- W1997374429 countsByYear W19973744292012 @default.
- W1997374429 countsByYear W19973744292013 @default.
- W1997374429 countsByYear W19973744292014 @default.
- W1997374429 countsByYear W19973744292018 @default.
- W1997374429 countsByYear W19973744292019 @default.
- W1997374429 countsByYear W19973744292020 @default.
- W1997374429 countsByYear W19973744292021 @default.
- W1997374429 countsByYear W19973744292022 @default.
- W1997374429 countsByYear W19973744292023 @default.
- W1997374429 crossrefType "journal-article" @default.
- W1997374429 hasAuthorship W1997374429A5010850124 @default.
- W1997374429 hasAuthorship W1997374429A5029614286 @default.
- W1997374429 hasAuthorship W1997374429A5046497335 @default.
- W1997374429 hasAuthorship W1997374429A5061253651 @default.
- W1997374429 hasAuthorship W1997374429A5087427931 @default.
- W1997374429 hasAuthorship W1997374429A5089324299 @default.
- W1997374429 hasConcept C116915560 @default.
- W1997374429 hasConcept C119857082 @default.
- W1997374429 hasConcept C121332964 @default.
- W1997374429 hasConcept C127413603 @default.
- W1997374429 hasConcept C133347239 @default.
- W1997374429 hasConcept C147789679 @default.
- W1997374429 hasConcept C163258240 @default.
- W1997374429 hasConcept C17525397 @default.
- W1997374429 hasConcept C178790620 @default.
- W1997374429 hasConcept C185592680 @default.
- W1997374429 hasConcept C192562407 @default.
- W1997374429 hasConcept C202189072 @default.
- W1997374429 hasConcept C21880701 @default.
- W1997374429 hasConcept C21881925 @default.
- W1997374429 hasConcept C2778456004 @default.
- W1997374429 hasConcept C41008148 @default.
- W1997374429 hasConcept C43535742 @default.
- W1997374429 hasConcept C50644808 @default.
- W1997374429 hasConcept C512968161 @default.
- W1997374429 hasConcept C89395315 @default.
- W1997374429 hasConcept C97355855 @default.
- W1997374429 hasConceptScore W1997374429C116915560 @default.
- W1997374429 hasConceptScore W1997374429C119857082 @default.
- W1997374429 hasConceptScore W1997374429C121332964 @default.
- W1997374429 hasConceptScore W1997374429C127413603 @default.
- W1997374429 hasConceptScore W1997374429C133347239 @default.
- W1997374429 hasConceptScore W1997374429C147789679 @default.
- W1997374429 hasConceptScore W1997374429C163258240 @default.
- W1997374429 hasConceptScore W1997374429C17525397 @default.
- W1997374429 hasConceptScore W1997374429C178790620 @default.
- W1997374429 hasConceptScore W1997374429C185592680 @default.
- W1997374429 hasConceptScore W1997374429C192562407 @default.