Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997403242> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W1997403242 abstract "Proposal Many companies have access to large databases of accident / incident data collected over many years of operations. Often however, best use of this data is not made and organisations find themselves limited in most instances to the generation of standard reports such as Lost Time Injury Frequency Rates or, at best, offering management the opportunity to generate ad hoc queries. As a consequence, a large reservoir of useful knowledge remains untapped. Human beings are notoriously bad at recognising patterns within data. When presented with huge quantities of information, we are unable to process it simultaneously and rapidly become overwhelmed. Neural Networks offer a solution to this problem. They provide HSE and line management with the opportunity to look deep into their accident databases and identify patterns within this data store. These patterns can then be used to identify appropriate management HSE objectives to further reduce accident rates. Using Neural Networks to analyse accident data provides a tool which satisfies four important questions in improving HSE performance; What are the major contributing factors to existing accidents?, What new issues are beginning to become a problem?, How effective have previous measures been in reducing the contribution of specific factors in accident causation? and finally, Have we achieved all that we can achieve within the scope of our current accident investigation methods? This paper describes how a Neural Network can be set up to analyse accident data and presents the results of several investigations using hundreds of accident reports." @default.
- W1997403242 created "2016-06-24" @default.
- W1997403242 creator A5028658903 @default.
- W1997403242 date "2004-03-29" @default.
- W1997403242 modified "2023-09-25" @default.
- W1997403242 title "Improving the Implementation of HSE Management Systems through the Use of Neural Networks to Analyse Accident Data" @default.
- W1997403242 doi "https://doi.org/10.2118/86735-ms" @default.
- W1997403242 hasPublicationYear "2004" @default.
- W1997403242 type Work @default.
- W1997403242 sameAs 1997403242 @default.
- W1997403242 citedByCount "0" @default.
- W1997403242 crossrefType "proceedings-article" @default.
- W1997403242 hasAuthorship W1997403242A5028658903 @default.
- W1997403242 hasConcept C111472728 @default.
- W1997403242 hasConcept C112930515 @default.
- W1997403242 hasConcept C138885662 @default.
- W1997403242 hasConcept C144133560 @default.
- W1997403242 hasConcept C154945302 @default.
- W1997403242 hasConcept C2780289543 @default.
- W1997403242 hasConcept C41008148 @default.
- W1997403242 hasConcept C50644808 @default.
- W1997403242 hasConceptScore W1997403242C111472728 @default.
- W1997403242 hasConceptScore W1997403242C112930515 @default.
- W1997403242 hasConceptScore W1997403242C138885662 @default.
- W1997403242 hasConceptScore W1997403242C144133560 @default.
- W1997403242 hasConceptScore W1997403242C154945302 @default.
- W1997403242 hasConceptScore W1997403242C2780289543 @default.
- W1997403242 hasConceptScore W1997403242C41008148 @default.
- W1997403242 hasConceptScore W1997403242C50644808 @default.
- W1997403242 hasLocation W19974032421 @default.
- W1997403242 hasOpenAccess W1997403242 @default.
- W1997403242 hasPrimaryLocation W19974032421 @default.
- W1997403242 hasRelatedWork W2057212535 @default.
- W1997403242 hasRelatedWork W2122320594 @default.
- W1997403242 hasRelatedWork W2146753331 @default.
- W1997403242 hasRelatedWork W2164852314 @default.
- W1997403242 hasRelatedWork W2964711776 @default.
- W1997403242 hasRelatedWork W3157959296 @default.
- W1997403242 hasRelatedWork W3201121012 @default.
- W1997403242 hasRelatedWork W4214576423 @default.
- W1997403242 hasRelatedWork W590423856 @default.
- W1997403242 hasRelatedWork W595056472 @default.
- W1997403242 isParatext "false" @default.
- W1997403242 isRetracted "false" @default.
- W1997403242 magId "1997403242" @default.
- W1997403242 workType "article" @default.