Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997448295> ?p ?o ?g. }
- W1997448295 endingPage "1780" @default.
- W1997448295 startingPage "1761" @default.
- W1997448295 abstract "Starting from a simple model for the lattice vibrations in a molecular crystal, I develop the transport theory for noninteracting electrons in a tight-binding band scattered by one- and two-phonon processes. The matrix elements for scattering by acoustic phonons, by librons, and by internal-mode phonons are obtained in the usual way from a simple Hamiltonian. For the one-phonon (1p) processes it is shown that a relaxation time exists and the Boltzmann equation is easily solved. With this solution formal expressions are obtained for conductivity $ensuremath{sigma}$ and thermopower $Q$. These are evaluated for the acoustic and libron cases for degenerate material in order to display the specific dependences on bandwidth, Fermi energy, phonon frequency, temperature, etc. Approximate expressions are also obtained for $ensuremath{sigma}$ and $Q$ for two-phonon (2p) processes. The formalism is then applied to calculate $ensuremath{sigma}$ and $Q$ numerically for tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ) for which the basic model should be reasonably valid in the temperature range $ensuremath{sim}100<T<300$ K. It is shown that the requirement that the Fermi level be the same for TTF and TCNQ, while the lattice constant and bandwidth change with temperature leads to the charge transfer's decreasing ensuremath{sim}20% from 60 to 300 K. The internal modes, for which the frequencies and coupling constants are fairly well known, are found to account for one-quarter of the resistivity at 300 K. The coupling constants for the other 1p processes required to match the observed resistivity versus $T$ are of the order of those deduced theoretically and experimentally for the LA mode, and therefore seem reasonable. The bandwidths that give good fits for $ensuremath{sigma}$ and $Q$, and are consistent with most other experiments, are 0.5 eV for TCNQ, half that for TTF. Similar fits are obtained by including some 2p processes, up to $frac{1}{3}$ of the total scattering. Calculations are carried out also for tetraselenufulvalene-tetracyanoquinodimethane (TSeF-TCNQ). The large pressure dependence of $ensuremath{sigma}$ at 300 K for TSeF-TCNQ, ensuremath{sim} 18%/kbar, is well explained by the pressure-variation of the bandwidth and acoustic-mode frequencies, plus some smaller effects. The additional 10%/kbar observed for TTF-TCNQ may be largely due to greater changes for TTF due to its small bandwidth. In contrast to all of the above, the proponents of the two-libron theory of transport for TTF-TCNQ claim that 1p scattering is negligible in the range $ensuremath{sim}100<T<300$ K, 2p processes being predominant. These claims are examined and found quite unconvincing. Allowing for the uncertainty in the coupling to LA and TA phonons, I find that the contribution of 2p scattering must be less than 50% at room temperature and smaller, of course, below; it may be negligible at all temperatures." @default.
- W1997448295 created "2016-06-24" @default.
- W1997448295 creator A5037400529 @default.
- W1997448295 date "1980-08-15" @default.
- W1997448295 modified "2023-10-18" @default.
- W1997448295 title "Band transport in quasi-one-dimensional conductors in the phonon-scattering regime and application to tetrathiofulvalene-tetracyanoquinodimethane" @default.
- W1997448295 cites W1964907081 @default.
- W1997448295 cites W1970239285 @default.
- W1997448295 cites W1979785924 @default.
- W1997448295 cites W1979842368 @default.
- W1997448295 cites W1981221343 @default.
- W1997448295 cites W1982341508 @default.
- W1997448295 cites W1989501201 @default.
- W1997448295 cites W1992683372 @default.
- W1997448295 cites W1993810127 @default.
- W1997448295 cites W1997509458 @default.
- W1997448295 cites W1999321894 @default.
- W1997448295 cites W2000034943 @default.
- W1997448295 cites W2001522112 @default.
- W1997448295 cites W2003122468 @default.
- W1997448295 cites W2005344753 @default.
- W1997448295 cites W2009575626 @default.
- W1997448295 cites W2010405992 @default.
- W1997448295 cites W2014811945 @default.
- W1997448295 cites W2015711708 @default.
- W1997448295 cites W2021759619 @default.
- W1997448295 cites W2022682565 @default.
- W1997448295 cites W2026296133 @default.
- W1997448295 cites W2027848271 @default.
- W1997448295 cites W2029308555 @default.
- W1997448295 cites W2029348028 @default.
- W1997448295 cites W2029819184 @default.
- W1997448295 cites W2044230956 @default.
- W1997448295 cites W2048274002 @default.
- W1997448295 cites W2048373591 @default.
- W1997448295 cites W2050411247 @default.
- W1997448295 cites W2051570156 @default.
- W1997448295 cites W2051915233 @default.
- W1997448295 cites W2052160180 @default.
- W1997448295 cites W2058592279 @default.
- W1997448295 cites W2063832505 @default.
- W1997448295 cites W2065076787 @default.
- W1997448295 cites W2067201775 @default.
- W1997448295 cites W2068914332 @default.
- W1997448295 cites W2082004005 @default.
- W1997448295 cites W2082265436 @default.
- W1997448295 cites W2082724393 @default.
- W1997448295 cites W2082746996 @default.
- W1997448295 cites W2084430094 @default.
- W1997448295 cites W2085092963 @default.
- W1997448295 cites W2085366109 @default.
- W1997448295 cites W2088545851 @default.
- W1997448295 cites W2093535903 @default.
- W1997448295 cites W2093690506 @default.
- W1997448295 cites W4241602192 @default.
- W1997448295 doi "https://doi.org/10.1103/physrevb.22.1761" @default.
- W1997448295 hasPublicationYear "1980" @default.
- W1997448295 type Work @default.
- W1997448295 sameAs 1997448295 @default.
- W1997448295 citedByCount "147" @default.
- W1997448295 countsByYear W19974482952013 @default.
- W1997448295 countsByYear W19974482952015 @default.
- W1997448295 countsByYear W19974482952017 @default.
- W1997448295 countsByYear W19974482952019 @default.
- W1997448295 crossrefType "journal-article" @default.
- W1997448295 hasAuthorship W1997448295A5037400529 @default.
- W1997448295 hasConcept C112625512 @default.
- W1997448295 hasConcept C121332964 @default.
- W1997448295 hasConcept C126255220 @default.
- W1997448295 hasConcept C130787639 @default.
- W1997448295 hasConcept C183276030 @default.
- W1997448295 hasConcept C191486275 @default.
- W1997448295 hasConcept C24169881 @default.
- W1997448295 hasConcept C26873012 @default.
- W1997448295 hasConcept C2780713452 @default.
- W1997448295 hasConcept C32909587 @default.
- W1997448295 hasConcept C33923547 @default.
- W1997448295 hasConcept C62520636 @default.
- W1997448295 hasConcept C69990965 @default.
- W1997448295 hasConcept C72319582 @default.
- W1997448295 hasConceptScore W1997448295C112625512 @default.
- W1997448295 hasConceptScore W1997448295C121332964 @default.
- W1997448295 hasConceptScore W1997448295C126255220 @default.
- W1997448295 hasConceptScore W1997448295C130787639 @default.
- W1997448295 hasConceptScore W1997448295C183276030 @default.
- W1997448295 hasConceptScore W1997448295C191486275 @default.
- W1997448295 hasConceptScore W1997448295C24169881 @default.
- W1997448295 hasConceptScore W1997448295C26873012 @default.
- W1997448295 hasConceptScore W1997448295C2780713452 @default.
- W1997448295 hasConceptScore W1997448295C32909587 @default.
- W1997448295 hasConceptScore W1997448295C33923547 @default.
- W1997448295 hasConceptScore W1997448295C62520636 @default.
- W1997448295 hasConceptScore W1997448295C69990965 @default.
- W1997448295 hasConceptScore W1997448295C72319582 @default.
- W1997448295 hasIssue "4" @default.
- W1997448295 hasLocation W19974482951 @default.
- W1997448295 hasOpenAccess W1997448295 @default.
- W1997448295 hasPrimaryLocation W19974482951 @default.