Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997492020> ?p ?o ?g. }
- W1997492020 abstract "The conditions that affect the formation of stars in radiatively and mechanically active environments are quite different from the conditions that apply to our local interstellar neighborhood. In these galactic environments, a variety of feedback processes can play a significant role in shaping the initial mass function (IMF). Here, we present a numerical study on the effects of an accreting black hole and the influence of nearby massive stars to a collapsing, 800 M-circle dot, molecular cloud at 10 pc distance from the black hole. Our work focusses on the star-forming ISM in the centers of (ultra-)luminous infrared galaxies ((U)LIRGS). We therefore assume that this region is enshrouded by gas and dust and that most of the UV and soft X-ray radiation from the broad line region (BLR) is attenuated along the line of sight to the model cloud. We then parametrize and study radiative feedback effects of hard X-rays emanating from the black hole BLR, increased cosmic ray rates caused by supernovae in starbursts, and strong UV radiation produced by nearby massive stars. We also investigate the importance of shear from the supermassive, 10(6)-10(8) M-circle dot, black hole as the star-forming cloud orbits around it. A grid of 42 models is created and calculated with the hydrodynamical code FLASH. We find that thermal pressure from X-rays compresses the cloud, which induces a high star-formation rate early on, but reduces the overall star-formation efficiency (SFE) to about 7% through gas depletion by evaporation. We see that the turn-over mass of the IMF increases up to a factor of 2.3, M-turn = 1-1.5 M-circle dot, for the model with the highest X-ray flux (160 erg s(-1) cm(-2)), while the high-mass slope of the IMF becomes Gamma greater than or similar to -1 (Gamma(Salpeter) = -1.35). This results in more high-mass stars and a non-Salpeter IMF. Cosmic rays penetrate deeply into the cloud and increase the gas temperature to about 50 K for rates that are roughly 100 times Galactic and 200 K for 3000 times Galactic, which leads to a reduced formation efficiency of low-mass stars. While the shape of the mass function is preserved, high cosmic ray rates increase the average mass of stars, thereby shifting the turn-over mass to higher values, i.e., up to several solar masses. Owing to this process, the onset of star formation is also delayed. We find that UV radiation plays only a minor role. Because UV photons cannot penetrate a dense, n >= 10(5) cm(-3), cloud deep enough, they only affect the late time accretion by heating the medium where the cloud is embedded in. When we increase the black hole mass, for a cloud that is at 10 pc distance, the turbulence caused by shearing effects reduces the SFE slightly. Furthermore, shear weakens the effect of the other parameters on the slope of the IMF as well as the turn-over mass. The run with the most massive black hole, however, causes so much shear that the hydrodynamics is completely dominated by this effect and it severely inhibits star formation. We conclude that the IMF inside active galaxies is different from the one obtained from local environments. We also find that the combined effects of X-rays, cosmic rays, UV, and shear tend to drive toward a less pronounced deviation from a Salpeter IMF." @default.
- W1997492020 created "2016-06-24" @default.
- W1997492020 creator A5035028565 @default.
- W1997492020 creator A5035812945 @default.
- W1997492020 date "2011-12-01" @default.
- W1997492020 modified "2023-09-26" @default.
- W1997492020 title "Star formation near an obscured AGN - Variations in the initial mass function" @default.
- W1997492020 cites W1495799903 @default.
- W1997492020 cites W1639285581 @default.
- W1997492020 cites W1681063222 @default.
- W1997492020 cites W1722809861 @default.
- W1997492020 cites W1758188984 @default.
- W1997492020 cites W1902228950 @default.
- W1997492020 cites W1968137411 @default.
- W1997492020 cites W1969249716 @default.
- W1997492020 cites W1974945287 @default.
- W1997492020 cites W1977843574 @default.
- W1997492020 cites W1978585746 @default.
- W1997492020 cites W1982598834 @default.
- W1997492020 cites W1990732800 @default.
- W1997492020 cites W1995371236 @default.
- W1997492020 cites W1995611439 @default.
- W1997492020 cites W2005631644 @default.
- W1997492020 cites W2009082275 @default.
- W1997492020 cites W2011578107 @default.
- W1997492020 cites W2013949855 @default.
- W1997492020 cites W2015068177 @default.
- W1997492020 cites W2015295900 @default.
- W1997492020 cites W2017100570 @default.
- W1997492020 cites W2023793647 @default.
- W1997492020 cites W2024148061 @default.
- W1997492020 cites W2025020517 @default.
- W1997492020 cites W2026328109 @default.
- W1997492020 cites W2026787292 @default.
- W1997492020 cites W2028041627 @default.
- W1997492020 cites W2032293292 @default.
- W1997492020 cites W2034547488 @default.
- W1997492020 cites W2034783616 @default.
- W1997492020 cites W2039226225 @default.
- W1997492020 cites W2039874334 @default.
- W1997492020 cites W2040533431 @default.
- W1997492020 cites W2042242368 @default.
- W1997492020 cites W2043149325 @default.
- W1997492020 cites W2044619143 @default.
- W1997492020 cites W2047272174 @default.
- W1997492020 cites W2051082354 @default.
- W1997492020 cites W2052528558 @default.
- W1997492020 cites W2052926303 @default.
- W1997492020 cites W2054219587 @default.
- W1997492020 cites W2054373355 @default.
- W1997492020 cites W2054857894 @default.
- W1997492020 cites W2057023417 @default.
- W1997492020 cites W2062327569 @default.
- W1997492020 cites W2073945818 @default.
- W1997492020 cites W2074228395 @default.
- W1997492020 cites W2076783262 @default.
- W1997492020 cites W2078796566 @default.
- W1997492020 cites W2079342811 @default.
- W1997492020 cites W2086247858 @default.
- W1997492020 cites W2102288963 @default.
- W1997492020 cites W2107546711 @default.
- W1997492020 cites W2108882781 @default.
- W1997492020 cites W2115547515 @default.
- W1997492020 cites W2123772849 @default.
- W1997492020 cites W2129760210 @default.
- W1997492020 cites W2140724657 @default.
- W1997492020 cites W2140847978 @default.
- W1997492020 cites W2141863055 @default.
- W1997492020 cites W2142993354 @default.
- W1997492020 cites W2145497559 @default.
- W1997492020 cites W2152238988 @default.
- W1997492020 cites W2154479587 @default.
- W1997492020 cites W2168615249 @default.
- W1997492020 cites W2171963067 @default.
- W1997492020 cites W2172110294 @default.
- W1997492020 cites W2952822475 @default.
- W1997492020 cites W3026000847 @default.
- W1997492020 cites W3100842115 @default.
- W1997492020 cites W3101999519 @default.
- W1997492020 cites W3102341133 @default.
- W1997492020 cites W3103385153 @default.
- W1997492020 cites W3103964696 @default.
- W1997492020 cites W3104573361 @default.
- W1997492020 cites W3104861015 @default.
- W1997492020 cites W3105794752 @default.
- W1997492020 cites W3112103559 @default.
- W1997492020 hasPublicationYear "2011" @default.
- W1997492020 type Work @default.
- W1997492020 sameAs 1997492020 @default.
- W1997492020 citedByCount "0" @default.
- W1997492020 crossrefType "journal-article" @default.
- W1997492020 hasAuthorship W1997492020A5035028565 @default.
- W1997492020 hasAuthorship W1997492020A5035812945 @default.
- W1997492020 hasBestOaLocation W19974920201 @default.
- W1997492020 hasConcept C104954878 @default.
- W1997492020 hasConcept C121332964 @default.
- W1997492020 hasConcept C125857072 @default.
- W1997492020 hasConcept C127592171 @default.
- W1997492020 hasConcept C1276947 @default.
- W1997492020 hasConcept C150846664 @default.