Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997571094> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W1997571094 abstract "In many text clustering tasks, there is some valuable knowledge about the problem domain, in addition to the original textual data involved in the clustering process. Traditional text clustering methods are unable to incorporate such additional (privileged) information into data clustering. Recently, a new paradigm called LUPI - Learning Using Privileged Information - was proposed by Vapnik to incorporate privileged information in classification tasks. In this paper, we extend the LUPI paradigm to deal with text clustering tasks. In particular, we show that the LUPI paradigm is potentially promising for incremental hierarchical text clustering, being very useful for organizing large textual databases. In our method, the privileged information about the text documents is applied to refine an initial clustering model by means of consensus clustering. The initial model is used for incremental clustering of the remaining text documents. We carried out an experimental evaluation on two benchmark text collections and the results showed that our method significantly improves the clustering accuracy when compared to a traditional hierarchical clustering method." @default.
- W1997571094 created "2016-06-24" @default.
- W1997571094 creator A5020612681 @default.
- W1997571094 creator A5073365814 @default.
- W1997571094 date "2013-09-10" @default.
- W1997571094 modified "2023-10-05" @default.
- W1997571094 title "Incremental hierarchical text clustering with privileged information" @default.
- W1997571094 cites W2067562626 @default.
- W1997571094 cites W2100904656 @default.
- W1997571094 cites W40976687 @default.
- W1997571094 doi "https://doi.org/10.1145/2494266.2494296" @default.
- W1997571094 hasPublicationYear "2013" @default.
- W1997571094 type Work @default.
- W1997571094 sameAs 1997571094 @default.
- W1997571094 citedByCount "15" @default.
- W1997571094 countsByYear W19975710942014 @default.
- W1997571094 countsByYear W19975710942015 @default.
- W1997571094 countsByYear W19975710942016 @default.
- W1997571094 countsByYear W19975710942017 @default.
- W1997571094 countsByYear W19975710942021 @default.
- W1997571094 countsByYear W19975710942022 @default.
- W1997571094 countsByYear W19975710942023 @default.
- W1997571094 crossrefType "proceedings-article" @default.
- W1997571094 hasAuthorship W1997571094A5020612681 @default.
- W1997571094 hasAuthorship W1997571094A5073365814 @default.
- W1997571094 hasConcept C154945302 @default.
- W1997571094 hasConcept C23123220 @default.
- W1997571094 hasConcept C41008148 @default.
- W1997571094 hasConcept C73555534 @default.
- W1997571094 hasConcept C92835128 @default.
- W1997571094 hasConceptScore W1997571094C154945302 @default.
- W1997571094 hasConceptScore W1997571094C23123220 @default.
- W1997571094 hasConceptScore W1997571094C41008148 @default.
- W1997571094 hasConceptScore W1997571094C73555534 @default.
- W1997571094 hasConceptScore W1997571094C92835128 @default.
- W1997571094 hasLocation W19975710941 @default.
- W1997571094 hasOpenAccess W1997571094 @default.
- W1997571094 hasPrimaryLocation W19975710941 @default.
- W1997571094 hasRelatedWork W2130043461 @default.
- W1997571094 hasRelatedWork W2350741829 @default.
- W1997571094 hasRelatedWork W2358668433 @default.
- W1997571094 hasRelatedWork W2376932109 @default.
- W1997571094 hasRelatedWork W2382290278 @default.
- W1997571094 hasRelatedWork W2390279801 @default.
- W1997571094 hasRelatedWork W2748952813 @default.
- W1997571094 hasRelatedWork W2899084033 @default.
- W1997571094 hasRelatedWork W3200375535 @default.
- W1997571094 hasRelatedWork W2530322880 @default.
- W1997571094 isParatext "false" @default.
- W1997571094 isRetracted "false" @default.
- W1997571094 magId "1997571094" @default.
- W1997571094 workType "article" @default.