Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997584208> ?p ?o ?g. }
- W1997584208 abstract "Results are reported concerning the transition to chaos in random dynamical systems. In particular, situations are considered where a periodic attractor coexists with a nonattracting chaotic saddle, which can be expected in any periodic window of a nonlinear dynamical system. Under noise, the asymptotic attractor of the system can become chaotic, as characterized by the appearance of a positive Lyapunov exponent. Generic features of the transition include the following: (1) the noisy chaotic attractor is necessarily nonhyperbolic as there are periodic orbits embedded in it with distinct numbers of unstable directions (unstable dimension variability), and this nonhyperbolicity develops as soon as the attractor becomes chaotic; (2) for systems described by differential equations, the unstable dimension variability destroys the neutral direction of the flow in the sense that there is no longer a zero Lyapunov exponent after the noisy attractor becomes chaotic; and (3) the largest Lyapunov exponent becomes positive from zero in a continuous manner, and its scaling with the variation of the noise amplitude is algebraic. Formulas for the scaling exponent are derived in all dimensions. Numerical support using both low- and high-dimensional systems is provided." @default.
- W1997584208 created "2016-06-24" @default.
- W1997584208 creator A5007573986 @default.
- W1997584208 creator A5020884951 @default.
- W1997584208 creator A5029357452 @default.
- W1997584208 creator A5060832073 @default.
- W1997584208 date "2003-02-19" @default.
- W1997584208 modified "2023-09-27" @default.
- W1997584208 title "Noise-induced unstable dimension variability and transition to chaos in random dynamical systems" @default.
- W1997584208 cites W1963741206 @default.
- W1997584208 cites W1967418598 @default.
- W1997584208 cites W1968448630 @default.
- W1997584208 cites W1970135831 @default.
- W1997584208 cites W1970500498 @default.
- W1997584208 cites W1974921424 @default.
- W1997584208 cites W1975056775 @default.
- W1997584208 cites W1980301874 @default.
- W1997584208 cites W1980673509 @default.
- W1997584208 cites W1980714284 @default.
- W1997584208 cites W1982787400 @default.
- W1997584208 cites W1984930436 @default.
- W1997584208 cites W1985039283 @default.
- W1997584208 cites W1998046749 @default.
- W1997584208 cites W1998244177 @default.
- W1997584208 cites W2003448873 @default.
- W1997584208 cites W2004659685 @default.
- W1997584208 cites W2007284752 @default.
- W1997584208 cites W2010188688 @default.
- W1997584208 cites W2015099144 @default.
- W1997584208 cites W2016182590 @default.
- W1997584208 cites W2021770854 @default.
- W1997584208 cites W2022382501 @default.
- W1997584208 cites W2023172624 @default.
- W1997584208 cites W2026546363 @default.
- W1997584208 cites W2026770234 @default.
- W1997584208 cites W2027222912 @default.
- W1997584208 cites W2028457667 @default.
- W1997584208 cites W2030590349 @default.
- W1997584208 cites W2030888688 @default.
- W1997584208 cites W2031668778 @default.
- W1997584208 cites W2033028174 @default.
- W1997584208 cites W2033750748 @default.
- W1997584208 cites W2038954595 @default.
- W1997584208 cites W2039522682 @default.
- W1997584208 cites W2042339464 @default.
- W1997584208 cites W2043060607 @default.
- W1997584208 cites W2043263081 @default.
- W1997584208 cites W2047819789 @default.
- W1997584208 cites W2049573246 @default.
- W1997584208 cites W2051501360 @default.
- W1997584208 cites W2052951731 @default.
- W1997584208 cites W2053632687 @default.
- W1997584208 cites W2064869058 @default.
- W1997584208 cites W2071806339 @default.
- W1997584208 cites W2073001463 @default.
- W1997584208 cites W2080570382 @default.
- W1997584208 cites W2081779814 @default.
- W1997584208 cites W2081789734 @default.
- W1997584208 cites W2085700802 @default.
- W1997584208 cites W2086126610 @default.
- W1997584208 cites W2086647826 @default.
- W1997584208 cites W2087468419 @default.
- W1997584208 cites W2088270034 @default.
- W1997584208 cites W2089796622 @default.
- W1997584208 cites W2093627340 @default.
- W1997584208 cites W2094228886 @default.
- W1997584208 cites W2095024705 @default.
- W1997584208 cites W2109994566 @default.
- W1997584208 cites W2111806088 @default.
- W1997584208 cites W2125331853 @default.
- W1997584208 cites W2126933998 @default.
- W1997584208 cites W2129647540 @default.
- W1997584208 cites W2139364442 @default.
- W1997584208 cites W2140755429 @default.
- W1997584208 cites W2141394518 @default.
- W1997584208 cites W2155576832 @default.
- W1997584208 cites W2165510765 @default.
- W1997584208 cites W2167726952 @default.
- W1997584208 cites W2171152960 @default.
- W1997584208 cites W3098234778 @default.
- W1997584208 cites W3098762100 @default.
- W1997584208 cites W4239452109 @default.
- W1997584208 cites W4294183471 @default.
- W1997584208 doi "https://doi.org/10.1103/physreve.67.026210" @default.
- W1997584208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12636779" @default.
- W1997584208 hasPublicationYear "2003" @default.
- W1997584208 type Work @default.
- W1997584208 sameAs 1997584208 @default.
- W1997584208 citedByCount "45" @default.
- W1997584208 countsByYear W19975842082012 @default.
- W1997584208 countsByYear W19975842082013 @default.
- W1997584208 countsByYear W19975842082014 @default.
- W1997584208 countsByYear W19975842082015 @default.
- W1997584208 countsByYear W19975842082016 @default.
- W1997584208 countsByYear W19975842082017 @default.
- W1997584208 countsByYear W19975842082018 @default.
- W1997584208 countsByYear W19975842082020 @default.
- W1997584208 countsByYear W19975842082022 @default.
- W1997584208 crossrefType "journal-article" @default.
- W1997584208 hasAuthorship W1997584208A5007573986 @default.