Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997653553> ?p ?o ?g. }
- W1997653553 endingPage "374" @default.
- W1997653553 startingPage "364" @default.
- W1997653553 abstract "Noise prediction is an important aspect of noise control in the design phase and the utilization phase of the industrial processes. This is of particular importance in the industrial embroidery which is an important part of the textile industry and in which workers are exposed to excessive noise. Using artificial neural networks, this study aims to present an empirical technique for predicting the noise level in the typical embroidery processes. The data from nine acoustic, structural and embroidery process features that influence the noise in 60 workrooms was used to develop the noise prediction technique. Multilayer feed forward neural networks with different structures were developed by using MATLAB software and genetic algorithm was employed to determine the optimal value for the initial weights of neural networks. Moreover, multiple regression techniques were employed and their results were compared with those of neural networks. The results showed that the neural networks provided more accurate predictions than did multiple regression techniques. The best neural networks could accurately predict the noise level (RMSE = 0.69 dB and R2 = 0.88). Our results demonstrate that, the developed empirical technique can be a helpful tool to analyze the noise pollution in the mentioned process and can enable acoustics and occupational health professionals to apply hearing conservation programs." @default.
- W1997653553 created "2016-06-24" @default.
- W1997653553 creator A5035142813 @default.
- W1997653553 creator A5050131337 @default.
- W1997653553 creator A5070630297 @default.
- W1997653553 creator A5073489335 @default.
- W1997653553 creator A5079434429 @default.
- W1997653553 date "2013-03-01" @default.
- W1997653553 modified "2023-09-23" @default.
- W1997653553 title "An empirical technique for predicting noise exposure level in the typical embroidery workrooms using artificial neural networks" @default.
- W1997653553 cites W1525987885 @default.
- W1997653553 cites W1973796943 @default.
- W1997653553 cites W1977315947 @default.
- W1997653553 cites W1978204331 @default.
- W1997653553 cites W1978705043 @default.
- W1997653553 cites W1979895079 @default.
- W1997653553 cites W1992306607 @default.
- W1997653553 cites W2002046642 @default.
- W1997653553 cites W2003186057 @default.
- W1997653553 cites W2003373926 @default.
- W1997653553 cites W2006135598 @default.
- W1997653553 cites W2008580043 @default.
- W1997653553 cites W2012644036 @default.
- W1997653553 cites W2023216830 @default.
- W1997653553 cites W2026590232 @default.
- W1997653553 cites W2028070629 @default.
- W1997653553 cites W2032578929 @default.
- W1997653553 cites W2036599383 @default.
- W1997653553 cites W2039939107 @default.
- W1997653553 cites W2046106965 @default.
- W1997653553 cites W2058662659 @default.
- W1997653553 cites W2058826062 @default.
- W1997653553 cites W2061482601 @default.
- W1997653553 cites W2074347418 @default.
- W1997653553 cites W2075807854 @default.
- W1997653553 cites W2087083671 @default.
- W1997653553 cites W2088023392 @default.
- W1997653553 cites W2091854537 @default.
- W1997653553 cites W2109057408 @default.
- W1997653553 doi "https://doi.org/10.1016/j.apacoust.2012.08.009" @default.
- W1997653553 hasPublicationYear "2013" @default.
- W1997653553 type Work @default.
- W1997653553 sameAs 1997653553 @default.
- W1997653553 citedByCount "15" @default.
- W1997653553 countsByYear W19976535532013 @default.
- W1997653553 countsByYear W19976535532014 @default.
- W1997653553 countsByYear W19976535532015 @default.
- W1997653553 countsByYear W19976535532016 @default.
- W1997653553 countsByYear W19976535532018 @default.
- W1997653553 countsByYear W19976535532019 @default.
- W1997653553 countsByYear W19976535532020 @default.
- W1997653553 countsByYear W19976535532021 @default.
- W1997653553 crossrefType "journal-article" @default.
- W1997653553 hasAuthorship W1997653553A5035142813 @default.
- W1997653553 hasAuthorship W1997653553A5050131337 @default.
- W1997653553 hasAuthorship W1997653553A5070630297 @default.
- W1997653553 hasAuthorship W1997653553A5073489335 @default.
- W1997653553 hasAuthorship W1997653553A5079434429 @default.
- W1997653553 hasConcept C111919701 @default.
- W1997653553 hasConcept C115961682 @default.
- W1997653553 hasConcept C116822448 @default.
- W1997653553 hasConcept C119857082 @default.
- W1997653553 hasConcept C127413603 @default.
- W1997653553 hasConcept C154945302 @default.
- W1997653553 hasConcept C163294075 @default.
- W1997653553 hasConcept C199360897 @default.
- W1997653553 hasConcept C2777904410 @default.
- W1997653553 hasConcept C2780365114 @default.
- W1997653553 hasConcept C41008148 @default.
- W1997653553 hasConcept C50644808 @default.
- W1997653553 hasConcept C98045186 @default.
- W1997653553 hasConcept C99498987 @default.
- W1997653553 hasConceptScore W1997653553C111919701 @default.
- W1997653553 hasConceptScore W1997653553C115961682 @default.
- W1997653553 hasConceptScore W1997653553C116822448 @default.
- W1997653553 hasConceptScore W1997653553C119857082 @default.
- W1997653553 hasConceptScore W1997653553C127413603 @default.
- W1997653553 hasConceptScore W1997653553C154945302 @default.
- W1997653553 hasConceptScore W1997653553C163294075 @default.
- W1997653553 hasConceptScore W1997653553C199360897 @default.
- W1997653553 hasConceptScore W1997653553C2777904410 @default.
- W1997653553 hasConceptScore W1997653553C2780365114 @default.
- W1997653553 hasConceptScore W1997653553C41008148 @default.
- W1997653553 hasConceptScore W1997653553C50644808 @default.
- W1997653553 hasConceptScore W1997653553C98045186 @default.
- W1997653553 hasConceptScore W1997653553C99498987 @default.
- W1997653553 hasIssue "3" @default.
- W1997653553 hasLocation W19976535531 @default.
- W1997653553 hasOpenAccess W1997653553 @default.
- W1997653553 hasPrimaryLocation W19976535531 @default.
- W1997653553 hasRelatedWork W1984276662 @default.
- W1997653553 hasRelatedWork W1997653553 @default.
- W1997653553 hasRelatedWork W2092632349 @default.
- W1997653553 hasRelatedWork W2246099663 @default.
- W1997653553 hasRelatedWork W2351398204 @default.
- W1997653553 hasRelatedWork W2370673468 @default.
- W1997653553 hasRelatedWork W2373590130 @default.
- W1997653553 hasRelatedWork W2375735900 @default.