Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997663254> ?p ?o ?g. }
- W1997663254 endingPage "1112" @default.
- W1997663254 startingPage "1095" @default.
- W1997663254 abstract "Image segmentation partitions an image into nonoverlapping regions, which ideally should be meaningful for a certain purpose. Automatic segmentation of images is a very challenging fundamental task in computer vision and one of the most crucial steps toward image understanding. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we present an effective color image segmentation approach based on pixel classification with least squares support vector machine (LS-SVM). Firstly, the pixel-level color feature, Homogeneity, is extracted in consideration of local human visual sensitivity for color pattern variation in HSV color space. Secondly, the image pixel's texture features, Maximum local energy, Maximum gradient, and Maximum second moment matrix, are represented via Gabor filter. Then, both the pixel-level color feature and texture feature are used as input of LS-SVM model (classifier), and the LS-SVM model (classifier) is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained LS-SVM model (classifier). This image segmentation not only can fully take advantage of the local information of color image, but also the ability of LS-SVM classifier. Experimental evidence shows that the proposed method has very effective segmentation results and computational behavior, and decreases the time and increases the quality of color image segmentation in comparison with the state-of-the-art segmentation methods recently proposed in the literature." @default.
- W1997663254 created "2016-06-24" @default.
- W1997663254 creator A5021689301 @default.
- W1997663254 creator A5073782477 @default.
- W1997663254 creator A5076702481 @default.
- W1997663254 creator A5080636854 @default.
- W1997663254 date "2012-10-01" @default.
- W1997663254 modified "2023-10-06" @default.
- W1997663254 title "LS-SVM based image segmentation using color and texture information" @default.
- W1997663254 cites W1528789833 @default.
- W1997663254 cites W1559451808 @default.
- W1997663254 cites W2002961836 @default.
- W1997663254 cites W2014041724 @default.
- W1997663254 cites W2016835686 @default.
- W1997663254 cites W2027656446 @default.
- W1997663254 cites W2034110104 @default.
- W1997663254 cites W2034692617 @default.
- W1997663254 cites W2039916920 @default.
- W1997663254 cites W2043245323 @default.
- W1997663254 cites W2057221234 @default.
- W1997663254 cites W2060223645 @default.
- W1997663254 cites W2066964635 @default.
- W1997663254 cites W2067191022 @default.
- W1997663254 cites W2077337938 @default.
- W1997663254 cites W2081220763 @default.
- W1997663254 cites W2083309241 @default.
- W1997663254 cites W2093393329 @default.
- W1997663254 cites W2097339009 @default.
- W1997663254 cites W2103147398 @default.
- W1997663254 cites W2109375656 @default.
- W1997663254 cites W2119823327 @default.
- W1997663254 cites W2121189958 @default.
- W1997663254 cites W2125378844 @default.
- W1997663254 cites W2129661341 @default.
- W1997663254 cites W2133141088 @default.
- W1997663254 cites W2138156462 @default.
- W1997663254 cites W2142916759 @default.
- W1997663254 cites W2143516773 @default.
- W1997663254 cites W2150231499 @default.
- W1997663254 cites W2166289851 @default.
- W1997663254 cites W4239510810 @default.
- W1997663254 doi "https://doi.org/10.1016/j.jvcir.2012.07.007" @default.
- W1997663254 hasPublicationYear "2012" @default.
- W1997663254 type Work @default.
- W1997663254 sameAs 1997663254 @default.
- W1997663254 citedByCount "43" @default.
- W1997663254 countsByYear W19976632542013 @default.
- W1997663254 countsByYear W19976632542014 @default.
- W1997663254 countsByYear W19976632542015 @default.
- W1997663254 countsByYear W19976632542016 @default.
- W1997663254 countsByYear W19976632542017 @default.
- W1997663254 countsByYear W19976632542018 @default.
- W1997663254 countsByYear W19976632542019 @default.
- W1997663254 countsByYear W19976632542020 @default.
- W1997663254 countsByYear W19976632542021 @default.
- W1997663254 countsByYear W19976632542022 @default.
- W1997663254 countsByYear W19976632542023 @default.
- W1997663254 crossrefType "journal-article" @default.
- W1997663254 hasAuthorship W1997663254A5021689301 @default.
- W1997663254 hasAuthorship W1997663254A5073782477 @default.
- W1997663254 hasAuthorship W1997663254A5076702481 @default.
- W1997663254 hasAuthorship W1997663254A5080636854 @default.
- W1997663254 hasConcept C115961682 @default.
- W1997663254 hasConcept C12267149 @default.
- W1997663254 hasConcept C124504099 @default.
- W1997663254 hasConcept C153180895 @default.
- W1997663254 hasConcept C154945302 @default.
- W1997663254 hasConcept C2781195486 @default.
- W1997663254 hasConcept C31972630 @default.
- W1997663254 hasConcept C41008148 @default.
- W1997663254 hasConcept C63099799 @default.
- W1997663254 hasConcept C89600930 @default.
- W1997663254 hasConceptScore W1997663254C115961682 @default.
- W1997663254 hasConceptScore W1997663254C12267149 @default.
- W1997663254 hasConceptScore W1997663254C124504099 @default.
- W1997663254 hasConceptScore W1997663254C153180895 @default.
- W1997663254 hasConceptScore W1997663254C154945302 @default.
- W1997663254 hasConceptScore W1997663254C2781195486 @default.
- W1997663254 hasConceptScore W1997663254C31972630 @default.
- W1997663254 hasConceptScore W1997663254C41008148 @default.
- W1997663254 hasConceptScore W1997663254C63099799 @default.
- W1997663254 hasConceptScore W1997663254C89600930 @default.
- W1997663254 hasIssue "7" @default.
- W1997663254 hasLocation W19976632541 @default.
- W1997663254 hasOpenAccess W1997663254 @default.
- W1997663254 hasPrimaryLocation W19976632541 @default.
- W1997663254 hasRelatedWork W1631910785 @default.
- W1997663254 hasRelatedWork W1669643531 @default.
- W1997663254 hasRelatedWork W2041399278 @default.
- W1997663254 hasRelatedWork W2110230079 @default.
- W1997663254 hasRelatedWork W2117933325 @default.
- W1997663254 hasRelatedWork W2122581818 @default.
- W1997663254 hasRelatedWork W2159066190 @default.
- W1997663254 hasRelatedWork W2739874619 @default.
- W1997663254 hasRelatedWork W2754350655 @default.
- W1997663254 hasRelatedWork W2897195263 @default.
- W1997663254 hasVolume "23" @default.
- W1997663254 isParatext "false" @default.