Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997740464> ?p ?o ?g. }
- W1997740464 endingPage "959" @default.
- W1997740464 startingPage "942" @default.
- W1997740464 abstract "Credit risk analysis is an active research area in financial risk management and credit scoring is one of the key analytical techniques in credit risk evaluation. In this study, a novel intelligent-agent-based fuzzy group decision making (GDM) model is proposed as an effective multicriteria decision analysis (MCDA) tool for credit risk evaluation. In this proposed model, some artificial intelligent techniques, which are used as intelligent agents, are first used to analyze and evaluate the risk levels of credit applicants over a set of pre-defined criteria. Then these evaluation results, generated by different intelligent agents, are fuzzified into some fuzzy opinions on credit risk level of applicants. Finally, these fuzzification opinions are aggregated into a group consensus and meantime the fuzzy aggregated consensus is defuzzified into a crisp aggregated value to support final decision for decision-makers of credit-granting institutions. For illustration and verification purposes, a simple numerical example and three real-world credit application approval datasets are presented." @default.
- W1997740464 created "2016-06-24" @default.
- W1997740464 creator A5011914191 @default.
- W1997740464 creator A5058109866 @default.
- W1997740464 creator A5078558986 @default.
- W1997740464 date "2009-06-01" @default.
- W1997740464 modified "2023-10-07" @default.
- W1997740464 title "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring" @default.
- W1997740464 cites W121619852 @default.
- W1997740464 cites W1498436455 @default.
- W1997740464 cites W1513232892 @default.
- W1997740464 cites W1524070058 @default.
- W1997740464 cites W1524780546 @default.
- W1997740464 cites W1547466200 @default.
- W1997740464 cites W1575296325 @default.
- W1997740464 cites W1964074981 @default.
- W1997740464 cites W1971403896 @default.
- W1997740464 cites W1980290744 @default.
- W1997740464 cites W1980770954 @default.
- W1997740464 cites W1985546543 @default.
- W1997740464 cites W1995953281 @default.
- W1997740464 cites W1996636297 @default.
- W1997740464 cites W2001619934 @default.
- W1997740464 cites W2003229336 @default.
- W1997740464 cites W2011414287 @default.
- W1997740464 cites W2011550024 @default.
- W1997740464 cites W2015406385 @default.
- W1997740464 cites W2016303054 @default.
- W1997740464 cites W2019046182 @default.
- W1997740464 cites W2029197838 @default.
- W1997740464 cites W2036753645 @default.
- W1997740464 cites W2038281539 @default.
- W1997740464 cites W2042243997 @default.
- W1997740464 cites W2051975352 @default.
- W1997740464 cites W2057199658 @default.
- W1997740464 cites W2059239932 @default.
- W1997740464 cites W2060591526 @default.
- W1997740464 cites W2063046703 @default.
- W1997740464 cites W2069619324 @default.
- W1997740464 cites W2070749840 @default.
- W1997740464 cites W2072532761 @default.
- W1997740464 cites W2072773743 @default.
- W1997740464 cites W2082358968 @default.
- W1997740464 cites W2084413241 @default.
- W1997740464 cites W2085223193 @default.
- W1997740464 cites W2085831731 @default.
- W1997740464 cites W2094467677 @default.
- W1997740464 cites W2108959409 @default.
- W1997740464 cites W2113442785 @default.
- W1997740464 cites W2133772980 @default.
- W1997740464 cites W2137983211 @default.
- W1997740464 cites W2143956139 @default.
- W1997740464 cites W2151554678 @default.
- W1997740464 cites W2158068969 @default.
- W1997740464 cites W3123427206 @default.
- W1997740464 cites W39040241 @default.
- W1997740464 cites W4212883601 @default.
- W1997740464 doi "https://doi.org/10.1016/j.ejor.2007.11.025" @default.
- W1997740464 hasPublicationYear "2009" @default.
- W1997740464 type Work @default.
- W1997740464 sameAs 1997740464 @default.
- W1997740464 citedByCount "176" @default.
- W1997740464 countsByYear W19977404642012 @default.
- W1997740464 countsByYear W19977404642013 @default.
- W1997740464 countsByYear W19977404642014 @default.
- W1997740464 countsByYear W19977404642015 @default.
- W1997740464 countsByYear W19977404642016 @default.
- W1997740464 countsByYear W19977404642017 @default.
- W1997740464 countsByYear W19977404642018 @default.
- W1997740464 countsByYear W19977404642019 @default.
- W1997740464 countsByYear W19977404642020 @default.
- W1997740464 countsByYear W19977404642021 @default.
- W1997740464 countsByYear W19977404642022 @default.
- W1997740464 countsByYear W19977404642023 @default.
- W1997740464 crossrefType "journal-article" @default.
- W1997740464 hasAuthorship W1997740464A5011914191 @default.
- W1997740464 hasAuthorship W1997740464A5058109866 @default.
- W1997740464 hasAuthorship W1997740464A5078558986 @default.
- W1997740464 hasConcept C10138342 @default.
- W1997740464 hasConcept C107327155 @default.
- W1997740464 hasConcept C11105738 @default.
- W1997740464 hasConcept C112930515 @default.
- W1997740464 hasConcept C144133560 @default.
- W1997740464 hasConcept C154945302 @default.
- W1997740464 hasConcept C178350159 @default.
- W1997740464 hasConcept C33923547 @default.
- W1997740464 hasConcept C41008148 @default.
- W1997740464 hasConcept C42011625 @default.
- W1997740464 hasConcept C42475967 @default.
- W1997740464 hasConcept C58166 @default.
- W1997740464 hasConceptScore W1997740464C10138342 @default.
- W1997740464 hasConceptScore W1997740464C107327155 @default.
- W1997740464 hasConceptScore W1997740464C11105738 @default.
- W1997740464 hasConceptScore W1997740464C112930515 @default.
- W1997740464 hasConceptScore W1997740464C144133560 @default.
- W1997740464 hasConceptScore W1997740464C154945302 @default.
- W1997740464 hasConceptScore W1997740464C178350159 @default.
- W1997740464 hasConceptScore W1997740464C33923547 @default.