Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997758314> ?p ?o ?g. }
- W1997758314 endingPage "e1002590" @default.
- W1997758314 startingPage "e1002590" @default.
- W1997758314 abstract "Recent theoretical studies have proposed that the redundant motor system in humans achieves well-organized stereotypical movements by minimizing motor effort cost and motor error. However, it is unclear how this optimization process is implemented in the brain, presumably because conventional schemes have assumed a priori that the brain somehow constructs the optimal motor command, and largely ignored the underlying trial-by-trial learning process. In contrast, recent studies focusing on the trial-by-trial modification of motor commands based on error information suggested that forgetting (i.e., memory decay), which is usually considered as an inconvenient factor in motor learning, plays an important role in minimizing the motor effort cost. Here, we examine whether trial-by-trial error-feedback learning with slight forgetting could minimize the motor effort and error in a highly redundant neural network for sensorimotor transformation and whether it could predict the stereotypical activation patterns observed in primary motor cortex (M1) neurons. First, using a simple linear neural network model, we theoretically demonstrated that: 1) this algorithm consistently leads the neural network to converge at a unique optimal state; 2) the biomechanical properties of the musculoskeletal system necessarily determine the distribution of the preferred directions (PD; the direction in which the neuron is maximally active) of M1 neurons; and 3) the bias of the PDs is steadily formed during the minimization of the motor effort. Furthermore, using a non-linear network model with realistic musculoskeletal data, we demonstrated numerically that this algorithm could consistently reproduce the PD distribution observed in various motor tasks, including two-dimensional isometric torque production, two-dimensional reaching, and even three-dimensional reaching tasks. These results may suggest that slight forgetting in the sensorimotor transformation network is responsible for solving the redundancy problem in motor control." @default.
- W1997758314 created "2016-06-24" @default.
- W1997758314 creator A5000208759 @default.
- W1997758314 creator A5014481437 @default.
- W1997758314 date "2012-06-28" @default.
- W1997758314 modified "2023-10-16" @default.
- W1997758314 title "Learning with Slight Forgetting Optimizes Sensorimotor Transformation in Redundant Motor Systems" @default.
- W1997758314 cites W1487392737 @default.
- W1997758314 cites W1498436455 @default.
- W1997758314 cites W1538246947 @default.
- W1997758314 cites W1598742496 @default.
- W1997758314 cites W1628387749 @default.
- W1997758314 cites W1635674943 @default.
- W1997758314 cites W1848452989 @default.
- W1997758314 cites W1866725057 @default.
- W1997758314 cites W1892385946 @default.
- W1997758314 cites W1897507705 @default.
- W1997758314 cites W1904024272 @default.
- W1997758314 cites W1956636948 @default.
- W1997758314 cites W1966452739 @default.
- W1997758314 cites W1971012026 @default.
- W1997758314 cites W1972413753 @default.
- W1997758314 cites W1973533922 @default.
- W1997758314 cites W1973739546 @default.
- W1997758314 cites W1980440818 @default.
- W1997758314 cites W1982865075 @default.
- W1997758314 cites W1983207634 @default.
- W1997758314 cites W1988498970 @default.
- W1997758314 cites W1997861712 @default.
- W1997758314 cites W2003775018 @default.
- W1997758314 cites W2007533435 @default.
- W1997758314 cites W2010540183 @default.
- W1997758314 cites W2022113456 @default.
- W1997758314 cites W2022439615 @default.
- W1997758314 cites W2024004911 @default.
- W1997758314 cites W2026609321 @default.
- W1997758314 cites W2028612696 @default.
- W1997758314 cites W2030268430 @default.
- W1997758314 cites W2032773159 @default.
- W1997758314 cites W2033336167 @default.
- W1997758314 cites W2034400440 @default.
- W1997758314 cites W2034586824 @default.
- W1997758314 cites W203724693 @default.
- W1997758314 cites W2042448904 @default.
- W1997758314 cites W2042907834 @default.
- W1997758314 cites W2044890387 @default.
- W1997758314 cites W2047207800 @default.
- W1997758314 cites W2056179104 @default.
- W1997758314 cites W2064527819 @default.
- W1997758314 cites W2068485163 @default.
- W1997758314 cites W2072583006 @default.
- W1997758314 cites W2076525365 @default.
- W1997758314 cites W2085238148 @default.
- W1997758314 cites W2098129508 @default.
- W1997758314 cites W2102021451 @default.
- W1997758314 cites W2105848810 @default.
- W1997758314 cites W2107325954 @default.
- W1997758314 cites W2109174714 @default.
- W1997758314 cites W2111528514 @default.
- W1997758314 cites W2111921539 @default.
- W1997758314 cites W2114318719 @default.
- W1997758314 cites W2116740732 @default.
- W1997758314 cites W2128705786 @default.
- W1997758314 cites W2131049905 @default.
- W1997758314 cites W2131991519 @default.
- W1997758314 cites W2145085734 @default.
- W1997758314 cites W2154358910 @default.
- W1997758314 cites W2155906179 @default.
- W1997758314 cites W2156567212 @default.
- W1997758314 cites W2157884142 @default.
- W1997758314 cites W2164603955 @default.
- W1997758314 cites W2165873177 @default.
- W1997758314 cites W2166052147 @default.
- W1997758314 cites W2166226199 @default.
- W1997758314 cites W2199135629 @default.
- W1997758314 cites W2200778808 @default.
- W1997758314 cites W95059072 @default.
- W1997758314 doi "https://doi.org/10.1371/journal.pcbi.1002590" @default.
- W1997758314 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3386159" @default.
- W1997758314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22761568" @default.
- W1997758314 hasPublicationYear "2012" @default.
- W1997758314 type Work @default.
- W1997758314 sameAs 1997758314 @default.
- W1997758314 citedByCount "20" @default.
- W1997758314 countsByYear W19977583142013 @default.
- W1997758314 countsByYear W19977583142014 @default.
- W1997758314 countsByYear W19977583142015 @default.
- W1997758314 countsByYear W19977583142016 @default.
- W1997758314 countsByYear W19977583142017 @default.
- W1997758314 countsByYear W19977583142018 @default.
- W1997758314 countsByYear W19977583142019 @default.
- W1997758314 countsByYear W19977583142020 @default.
- W1997758314 countsByYear W19977583142021 @default.
- W1997758314 countsByYear W19977583142022 @default.
- W1997758314 countsByYear W19977583142023 @default.
- W1997758314 crossrefType "journal-article" @default.
- W1997758314 hasAuthorship W1997758314A5000208759 @default.
- W1997758314 hasAuthorship W1997758314A5014481437 @default.