Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997766408> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1997766408 endingPage "679" @default.
- W1997766408 startingPage "675" @default.
- W1997766408 abstract "In past days many researchers have been worked on the expansive soil to determine the California Bearing Ratio (CBR) values in a conventional ways, which are time consuming and require lot of manual involvements. So we the authors of this research paper attempted to develop a soft computing technique to prognosticate CBR value by using Artificial Neural Network (ANN), a data driven technique. ANN is a mathematical model inspired from the human brain’s information-processing characteristics, including the parallel processing ability. Over the last few years, the use of ANN has increased in many areas of engineering. In particular have been applied to many geotechnical engineering problems and have demonstrated some degree of success. A review of the literature reveals that ANN has been used successfully in the pile capacity prediction, site characterization and so on. In the present study the Black Cotton (BC) soil has been stabilized by using Rice Husk Ash (RHA) and cement, several experiments have been conducted for different mix combinations under soaked condition. From the obtained results, it is observed that the CBR value of BC soil increases with the addition of RHA and cement combination. The soaked CBR value found to be maximum for the mix of BC soil + 15% RHA + 12% cement. The present study deals with collection of input data base from experimental results, ANN’s training and its testing are adopted to fix the appropriate weighted matrix (Illustrated in Fig (1)) which in turn Prognosticates the CBR value. Experimental results have been compared with the CBR values prognosticated by using ANN and comparison graphs also plotted (Illustrated in fig (4)). The results of this study will contribute for the prognostication of CBR, which will assist a geotechnical engineer in estimation of CBR, with minimum effort." @default.
- W1997766408 created "2016-06-24" @default.
- W1997766408 creator A5017996164 @default.
- W1997766408 creator A5019188310 @default.
- W1997766408 creator A5057412279 @default.
- W1997766408 date "2011-05-01" @default.
- W1997766408 modified "2023-10-09" @default.
- W1997766408 title "Complex CBR (of BC Soil-RHA-Cement Mix) Estimation: Made Easy by ANN Approach [a Soft Computing Technique]" @default.
- W1997766408 cites W1558271586 @default.
- W1997766408 cites W2113334494 @default.
- W1997766408 doi "https://doi.org/10.4028/www.scientific.net/amr.261-263.675" @default.
- W1997766408 hasPublicationYear "2011" @default.
- W1997766408 type Work @default.
- W1997766408 sameAs 1997766408 @default.
- W1997766408 citedByCount "4" @default.
- W1997766408 countsByYear W19977664082015 @default.
- W1997766408 countsByYear W19977664082019 @default.
- W1997766408 countsByYear W19977664082021 @default.
- W1997766408 crossrefType "journal-article" @default.
- W1997766408 hasAuthorship W1997766408A5017996164 @default.
- W1997766408 hasAuthorship W1997766408A5019188310 @default.
- W1997766408 hasAuthorship W1997766408A5057412279 @default.
- W1997766408 hasConcept C127413603 @default.
- W1997766408 hasConcept C140073362 @default.
- W1997766408 hasConcept C147176958 @default.
- W1997766408 hasConcept C154945302 @default.
- W1997766408 hasConcept C159985019 @default.
- W1997766408 hasConcept C187320778 @default.
- W1997766408 hasConcept C192562407 @default.
- W1997766408 hasConcept C39432304 @default.
- W1997766408 hasConcept C41008148 @default.
- W1997766408 hasConcept C50644808 @default.
- W1997766408 hasConcept C523993062 @default.
- W1997766408 hasConcept C59822182 @default.
- W1997766408 hasConcept C75296557 @default.
- W1997766408 hasConcept C86803240 @default.
- W1997766408 hasConcept C88463610 @default.
- W1997766408 hasConceptScore W1997766408C127413603 @default.
- W1997766408 hasConceptScore W1997766408C140073362 @default.
- W1997766408 hasConceptScore W1997766408C147176958 @default.
- W1997766408 hasConceptScore W1997766408C154945302 @default.
- W1997766408 hasConceptScore W1997766408C159985019 @default.
- W1997766408 hasConceptScore W1997766408C187320778 @default.
- W1997766408 hasConceptScore W1997766408C192562407 @default.
- W1997766408 hasConceptScore W1997766408C39432304 @default.
- W1997766408 hasConceptScore W1997766408C41008148 @default.
- W1997766408 hasConceptScore W1997766408C50644808 @default.
- W1997766408 hasConceptScore W1997766408C523993062 @default.
- W1997766408 hasConceptScore W1997766408C59822182 @default.
- W1997766408 hasConceptScore W1997766408C75296557 @default.
- W1997766408 hasConceptScore W1997766408C86803240 @default.
- W1997766408 hasConceptScore W1997766408C88463610 @default.
- W1997766408 hasLocation W19977664081 @default.
- W1997766408 hasOpenAccess W1997766408 @default.
- W1997766408 hasPrimaryLocation W19977664081 @default.
- W1997766408 hasRelatedWork W114869605 @default.
- W1997766408 hasRelatedWork W1969073322 @default.
- W1997766408 hasRelatedWork W1986262083 @default.
- W1997766408 hasRelatedWork W2012414072 @default.
- W1997766408 hasRelatedWork W2088872599 @default.
- W1997766408 hasRelatedWork W2198757001 @default.
- W1997766408 hasRelatedWork W2365892273 @default.
- W1997766408 hasRelatedWork W2955761943 @default.
- W1997766408 hasRelatedWork W3036805983 @default.
- W1997766408 hasRelatedWork W4297920613 @default.
- W1997766408 hasVolume "261-263" @default.
- W1997766408 isParatext "false" @default.
- W1997766408 isRetracted "false" @default.
- W1997766408 magId "1997766408" @default.
- W1997766408 workType "article" @default.