Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997888335> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1997888335 endingPage "80" @default.
- W1997888335 startingPage "72" @default.
- W1997888335 abstract "Flexagons were discovered in 1939 by topologist Arthur Stone. A regular flexagon is one that contains 9n equilateral triangular regions on a straight strip of paper. This paper is then rolled into smaller strips of paper and finally into a hexagon with 6 triangular regions called pats, producing one mathematical face. The pinch flex removes the uppermost triangular regions and replaces them with a new set producing a new face. The flexagon is said to have order 3n because you can color 3n of the faces with 3n different colors. It is well known that when only the pinch flex is used, a flexagon of order 3n is a möbius band with 3(3n−2) half-twists, and has 6n−3 different mathematical faces. Even though a colored face appears more than once, the uppermost triangles might be rotated producing a different mathematical face. When T. Bruce McLean described the V-flex on the flexagon of order 6 in 1979, he showed that it now had 3420 mathematical faces and provided a graph that demonstrated how to reach all of the different faces. This flex scrambles the colors similar to the way the Rubik’s cube does except that a flexagon is flat. It is the purpose of this paper to provide an algorithm that counts the number of mathematical faces for flexagons of order 3n for all n, once the V-flex is included. A theorem in this paper gives a recursive formula that counts the number of different pats of a given thickness (or degree). To start the count for the number of mathematical faces of a regular flexagon of order 3n an ordered set of 6 degrees that add to 9n is considered. The adjacent degrees must add to a multiple of three according to the axioms of a flexagon using both flexes. Two sets are equivalent if you can rotate one six-tuplet into the other. Then for each case, the number of pats given by this Theorem that have degrees of those 6 numbers can be multiplied by the fundamental theorem of counting and these are called initial faces after rotations are removed. The last step in the count is to allow for translations of the flexagon and when there is no symmetry, you can multiply the number of initial faces by 9n. You can only multiply by 3n when there is complete symmetry. The Java applets provided only work for the traditional integer data type." @default.
- W1997888335 created "2016-06-24" @default.
- W1997888335 creator A5017126981 @default.
- W1997888335 creator A5025940947 @default.
- W1997888335 creator A5033186134 @default.
- W1997888335 creator A5065963568 @default.
- W1997888335 date "2010-01-01" @default.
- W1997888335 modified "2023-10-14" @default.
- W1997888335 title "The combinatorics of all regular flexagons" @default.
- W1997888335 cites W1972979258 @default.
- W1997888335 cites W2333164841 @default.
- W1997888335 doi "https://doi.org/10.1016/j.ejc.2009.01.005" @default.
- W1997888335 hasPublicationYear "2010" @default.
- W1997888335 type Work @default.
- W1997888335 sameAs 1997888335 @default.
- W1997888335 citedByCount "2" @default.
- W1997888335 countsByYear W19978883352012 @default.
- W1997888335 crossrefType "journal-article" @default.
- W1997888335 hasAuthorship W1997888335A5017126981 @default.
- W1997888335 hasAuthorship W1997888335A5025940947 @default.
- W1997888335 hasAuthorship W1997888335A5033186134 @default.
- W1997888335 hasAuthorship W1997888335A5065963568 @default.
- W1997888335 hasBestOaLocation W19978883351 @default.
- W1997888335 hasConcept C10138342 @default.
- W1997888335 hasConcept C105795698 @default.
- W1997888335 hasConcept C114614502 @default.
- W1997888335 hasConcept C118615104 @default.
- W1997888335 hasConcept C132525143 @default.
- W1997888335 hasConcept C144024400 @default.
- W1997888335 hasConcept C146786541 @default.
- W1997888335 hasConcept C159985019 @default.
- W1997888335 hasConcept C162324750 @default.
- W1997888335 hasConcept C178186502 @default.
- W1997888335 hasConcept C182306322 @default.
- W1997888335 hasConcept C192562407 @default.
- W1997888335 hasConcept C2524010 @default.
- W1997888335 hasConcept C2776252893 @default.
- W1997888335 hasConcept C2778307483 @default.
- W1997888335 hasConcept C2779304628 @default.
- W1997888335 hasConcept C33923547 @default.
- W1997888335 hasConcept C36289849 @default.
- W1997888335 hasConceptScore W1997888335C10138342 @default.
- W1997888335 hasConceptScore W1997888335C105795698 @default.
- W1997888335 hasConceptScore W1997888335C114614502 @default.
- W1997888335 hasConceptScore W1997888335C118615104 @default.
- W1997888335 hasConceptScore W1997888335C132525143 @default.
- W1997888335 hasConceptScore W1997888335C144024400 @default.
- W1997888335 hasConceptScore W1997888335C146786541 @default.
- W1997888335 hasConceptScore W1997888335C159985019 @default.
- W1997888335 hasConceptScore W1997888335C162324750 @default.
- W1997888335 hasConceptScore W1997888335C178186502 @default.
- W1997888335 hasConceptScore W1997888335C182306322 @default.
- W1997888335 hasConceptScore W1997888335C192562407 @default.
- W1997888335 hasConceptScore W1997888335C2524010 @default.
- W1997888335 hasConceptScore W1997888335C2776252893 @default.
- W1997888335 hasConceptScore W1997888335C2778307483 @default.
- W1997888335 hasConceptScore W1997888335C2779304628 @default.
- W1997888335 hasConceptScore W1997888335C33923547 @default.
- W1997888335 hasConceptScore W1997888335C36289849 @default.
- W1997888335 hasIssue "1" @default.
- W1997888335 hasLocation W19978883351 @default.
- W1997888335 hasOpenAccess W1997888335 @default.
- W1997888335 hasPrimaryLocation W19978883351 @default.
- W1997888335 hasRelatedWork W1968296247 @default.
- W1997888335 hasRelatedWork W2081579115 @default.
- W1997888335 hasRelatedWork W2149918285 @default.
- W1997888335 hasRelatedWork W2939412085 @default.
- W1997888335 hasRelatedWork W3043628320 @default.
- W1997888335 hasRelatedWork W3044704075 @default.
- W1997888335 hasRelatedWork W3082187648 @default.
- W1997888335 hasRelatedWork W4221045572 @default.
- W1997888335 hasRelatedWork W4297785383 @default.
- W1997888335 hasRelatedWork W4299574198 @default.
- W1997888335 hasVolume "31" @default.
- W1997888335 isParatext "false" @default.
- W1997888335 isRetracted "false" @default.
- W1997888335 magId "1997888335" @default.
- W1997888335 workType "article" @default.