Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997944660> ?p ?o ?g. }
- W1997944660 endingPage "92" @default.
- W1997944660 startingPage "83" @default.
- W1997944660 abstract "A variety of neurodegenerative diseases are associated with amyloid plaques, which begin as soluble protein oligomers but develop into amyloid fibrils. Our incomplete understanding of this process underscores the need to decipher the principles governing protein aggregation. Mechanisms of in vivo amyloid formation involve a number of coconspirators and complex interactions with membranes. Nevertheless, understanding the biophysical basis of simpler in vitro amyloid formation is considered important for discovering ligands that preferentially bind regions harboring amyloidogenic tendencies. The determination of the fibril structure of many peptides has set the stage for probing the dynamics of oligomer formation and amyloid growth through computer simulations. Most experimental and simulation studies, however, have been interpreted largely from the perspective of proteins: the role of solvent has been relatively overlooked in oligomer formation and assembly to protofilaments and amyloid fibrils. In this Account, we provide a perspective on how interactions with water affect folding landscapes of amyloid beta (Aβ) monomers, oligomer formation in the Aβ16-22 fragment, and protofilament formation in a peptide from yeast prion Sup35. Explicit molecular dynamics simulations illustrate how water controls the self-assembly of higher order structures, providing a structural basis for understanding the kinetics of oligomer and fibril growth. Simulations show that monomers of Aβ peptides sample a number of compact conformations. The formation of aggregation-prone structures (N*) with a salt bridge, strikingly similar to the structure in the fibril, requires overcoming a high desolvation barrier. In general, sequences for which N* structures are not significantly populated are unlikely to aggregate. Oligomers and fibrils generally form in two steps. First, water is expelled from the region between peptides rich in hydrophobic residues (for example, Aβ16-22), resulting in disordered oligomers. Then the peptides align along a preferred axis to form ordered structures with anti-parallel β-strand arrangement. The rate-limiting step in the ordered assembly is the rearrangement of the peptides within a confining volume. The mechanism of protofilament formation in a polar peptide fragment from the yeast prion, in which the two sheets are packed against each other and create a dry interface, illustrates that water dramatically slows self-assembly. As the sheets approach each other, two perfectly ordered one-dimensional water wires form. They are stabilized by hydrogen bonds to the amide groups of the polar side chains, resulting in the formation of long-lived metastable structures. Release of trapped water from the pore creates a helically twisted protofilament with a dry interface. Similarly, the driving force for addition of a solvated monomer to a preformed fibril is water release; the entropy gain and favorable interpeptide hydrogen bond formation compensate for entropy loss in the peptides. We conclude by offering evidence that a two-step model, similar to that postulated for protein crystallization, must also hold for higher order amyloid structure formation starting from N*. Distinct water-laden polymorphic structures result from multiple N* structures. Water plays multifarious roles in all of these protein aggregations. In predominantly hydrophobic sequences, water accelerates fibril formation. In contrast, water-stabilized metastable intermediates dramatically slow fibril growth rates in hydrophilic sequences." @default.
- W1997944660 created "2016-06-24" @default.
- W1997944660 creator A5036725653 @default.
- W1997944660 creator A5058069370 @default.
- W1997944660 creator A5075084768 @default.
- W1997944660 date "2011-07-15" @default.
- W1997944660 modified "2023-10-16" @default.
- W1997944660 title "Role of Water in Protein Aggregation and Amyloid Polymorphism" @default.
- W1997944660 cites W1966159542 @default.
- W1997944660 cites W1970865115 @default.
- W1997944660 cites W1975769486 @default.
- W1997944660 cites W1977687419 @default.
- W1997944660 cites W1979575360 @default.
- W1997944660 cites W1980232931 @default.
- W1997944660 cites W1980237498 @default.
- W1997944660 cites W1980482609 @default.
- W1997944660 cites W1981735680 @default.
- W1997944660 cites W1983316917 @default.
- W1997944660 cites W1983527546 @default.
- W1997944660 cites W1993027148 @default.
- W1997944660 cites W1994081387 @default.
- W1997944660 cites W1995394213 @default.
- W1997944660 cites W1995442956 @default.
- W1997944660 cites W1995548194 @default.
- W1997944660 cites W2004098528 @default.
- W1997944660 cites W2005426900 @default.
- W1997944660 cites W2008151389 @default.
- W1997944660 cites W2008307658 @default.
- W1997944660 cites W2024473468 @default.
- W1997944660 cites W2035385837 @default.
- W1997944660 cites W2043308634 @default.
- W1997944660 cites W2046093999 @default.
- W1997944660 cites W2046095963 @default.
- W1997944660 cites W2048253059 @default.
- W1997944660 cites W2060449809 @default.
- W1997944660 cites W2062324991 @default.
- W1997944660 cites W2063118926 @default.
- W1997944660 cites W2066185874 @default.
- W1997944660 cites W2068334126 @default.
- W1997944660 cites W2068513553 @default.
- W1997944660 cites W2070783701 @default.
- W1997944660 cites W2074255526 @default.
- W1997944660 cites W2075075217 @default.
- W1997944660 cites W2080780414 @default.
- W1997944660 cites W2088865014 @default.
- W1997944660 cites W2095046117 @default.
- W1997944660 cites W2099092270 @default.
- W1997944660 cites W2099653907 @default.
- W1997944660 cites W2107947409 @default.
- W1997944660 cites W2109727228 @default.
- W1997944660 cites W2117537971 @default.
- W1997944660 cites W2118280241 @default.
- W1997944660 cites W2119781014 @default.
- W1997944660 cites W2121374178 @default.
- W1997944660 cites W2143495798 @default.
- W1997944660 cites W2149060580 @default.
- W1997944660 cites W2150109193 @default.
- W1997944660 cites W2155073864 @default.
- W1997944660 cites W2155430461 @default.
- W1997944660 cites W2162741488 @default.
- W1997944660 cites W2167366010 @default.
- W1997944660 cites W2167517570 @default.
- W1997944660 cites W2469305941 @default.
- W1997944660 cites W3102930513 @default.
- W1997944660 doi "https://doi.org/10.1021/ar2000869" @default.
- W1997944660 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3218239" @default.
- W1997944660 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21761818" @default.
- W1997944660 hasPublicationYear "2011" @default.
- W1997944660 type Work @default.
- W1997944660 sameAs 1997944660 @default.
- W1997944660 citedByCount "287" @default.
- W1997944660 countsByYear W19979446602012 @default.
- W1997944660 countsByYear W19979446602013 @default.
- W1997944660 countsByYear W19979446602014 @default.
- W1997944660 countsByYear W19979446602015 @default.
- W1997944660 countsByYear W19979446602016 @default.
- W1997944660 countsByYear W19979446602017 @default.
- W1997944660 countsByYear W19979446602018 @default.
- W1997944660 countsByYear W19979446602019 @default.
- W1997944660 countsByYear W19979446602020 @default.
- W1997944660 countsByYear W19979446602021 @default.
- W1997944660 countsByYear W19979446602022 @default.
- W1997944660 countsByYear W19979446602023 @default.
- W1997944660 crossrefType "journal-article" @default.
- W1997944660 hasAuthorship W1997944660A5036725653 @default.
- W1997944660 hasAuthorship W1997944660A5058069370 @default.
- W1997944660 hasAuthorship W1997944660A5075084768 @default.
- W1997944660 hasBestOaLocation W19979446602 @default.
- W1997944660 hasConcept C12554922 @default.
- W1997944660 hasConcept C136238340 @default.
- W1997944660 hasConcept C142724271 @default.
- W1997944660 hasConcept C147597530 @default.
- W1997944660 hasConcept C166940927 @default.
- W1997944660 hasConcept C178790620 @default.
- W1997944660 hasConcept C179104552 @default.
- W1997944660 hasConcept C185592680 @default.
- W1997944660 hasConcept C204328495 @default.
- W1997944660 hasConcept C27523624 @default.