Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997989901> ?p ?o ?g. }
- W1997989901 endingPage "292" @default.
- W1997989901 startingPage "280" @default.
- W1997989901 abstract "Ensemble pruning is a desirable and popular method to overcome the deficiency of high computational costs of traditional ensemble learning techniques. Among various of ensemble pruning methods, rank-based pruning is conceptually the simplest and possesses performance advantage. While four evaluation measures for rank-based ensemble pruning specifically for time series prediction are proposed by us in this paper. The first one, i.e. Complementarity measure for time series prediction (ComTSP), is properly modified from Complementarity measure (COM) for classification. The design idea of ComTSP is, if the error made by the subensemble for a pruning sample is larger than that by the candidate predictor to a certain extent, it is assumed that the predictor is complementary to the subensemble. And the predictor which minimizes the error rate of subensemble on the pruning set will be selected at each selection step. The second one, i.e. Concurrency thinning for time series prediction (ConTSP), is correctly transformed from Concurrency measure (CON) for classification. With ConTSP, a predictor is rewarded for obtaining a good performance, and rewarded more for obtaining a good performance when the subensemble performs badly. A predictor is penalized when both the subensemble and itself perform poorly. The measure ReTSP-Value is specifically designed for Reduce Error (RE) pruning for time series prediction. However, ReTSP-Value and ComTSP have the same flaw that, they could not guarantee the remaining predictor which supplements the subensemble the most will be selected. The cause of this flaw is that the predictive error in time series prediction is directional. It is not reasonable for these measures to take reducing error as the only goal while ignore the error direction. While our finally proposed measure ReTSP-Trend overcomes this defect, taking into consideration the trend of time series and the direction of forecasting error. It could indeed guarantee that the remaining predictor which supplements the subensemble the most will be selected. The comparison experiments on four benchmark financial time series datasets show that the measure ReTSP-Trend outperforms the other measures, which can remarkably improve the predictive ability and promote the generalization capability of the pruned ensembles for time series forecasting." @default.
- W1997989901 created "2016-06-24" @default.
- W1997989901 creator A5008891189 @default.
- W1997989901 creator A5051345533 @default.
- W1997989901 creator A5067114555 @default.
- W1997989901 date "2015-01-01" @default.
- W1997989901 modified "2023-10-14" @default.
- W1997989901 title "Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction" @default.
- W1997989901 cites W1964545824 @default.
- W1997989901 cites W1979910324 @default.
- W1997989901 cites W1980264541 @default.
- W1997989901 cites W1995276998 @default.
- W1997989901 cites W2024804972 @default.
- W1997989901 cites W2029897006 @default.
- W1997989901 cites W2063128958 @default.
- W1997989901 cites W2065165463 @default.
- W1997989901 cites W2088218958 @default.
- W1997989901 cites W2100128988 @default.
- W1997989901 cites W2103346566 @default.
- W1997989901 cites W2115629999 @default.
- W1997989901 cites W2156019969 @default.
- W1997989901 cites W2163983382 @default.
- W1997989901 cites W2170375089 @default.
- W1997989901 cites W3123021517 @default.
- W1997989901 cites W4292671038 @default.
- W1997989901 cites W2172200702 @default.
- W1997989901 doi "https://doi.org/10.1016/j.eswa.2014.07.049" @default.
- W1997989901 hasPublicationYear "2015" @default.
- W1997989901 type Work @default.
- W1997989901 sameAs 1997989901 @default.
- W1997989901 citedByCount "22" @default.
- W1997989901 countsByYear W19979899012015 @default.
- W1997989901 countsByYear W19979899012016 @default.
- W1997989901 countsByYear W19979899012017 @default.
- W1997989901 countsByYear W19979899012018 @default.
- W1997989901 countsByYear W19979899012019 @default.
- W1997989901 countsByYear W19979899012020 @default.
- W1997989901 countsByYear W19979899012021 @default.
- W1997989901 countsByYear W19979899012022 @default.
- W1997989901 crossrefType "journal-article" @default.
- W1997989901 hasAuthorship W1997989901A5008891189 @default.
- W1997989901 hasAuthorship W1997989901A5051345533 @default.
- W1997989901 hasAuthorship W1997989901A5067114555 @default.
- W1997989901 hasConcept C104317684 @default.
- W1997989901 hasConcept C108010975 @default.
- W1997989901 hasConcept C11413529 @default.
- W1997989901 hasConcept C114614502 @default.
- W1997989901 hasConcept C119857082 @default.
- W1997989901 hasConcept C124101348 @default.
- W1997989901 hasConcept C143724316 @default.
- W1997989901 hasConcept C151730666 @default.
- W1997989901 hasConcept C154945302 @default.
- W1997989901 hasConcept C164226766 @default.
- W1997989901 hasConcept C167085575 @default.
- W1997989901 hasConcept C185592680 @default.
- W1997989901 hasConcept C202269582 @default.
- W1997989901 hasConcept C2780009758 @default.
- W1997989901 hasConcept C33923547 @default.
- W1997989901 hasConcept C41008148 @default.
- W1997989901 hasConcept C45942800 @default.
- W1997989901 hasConcept C50644808 @default.
- W1997989901 hasConcept C54355233 @default.
- W1997989901 hasConcept C5465570 @default.
- W1997989901 hasConcept C55493867 @default.
- W1997989901 hasConcept C63479239 @default.
- W1997989901 hasConcept C6557445 @default.
- W1997989901 hasConcept C86803240 @default.
- W1997989901 hasConceptScore W1997989901C104317684 @default.
- W1997989901 hasConceptScore W1997989901C108010975 @default.
- W1997989901 hasConceptScore W1997989901C11413529 @default.
- W1997989901 hasConceptScore W1997989901C114614502 @default.
- W1997989901 hasConceptScore W1997989901C119857082 @default.
- W1997989901 hasConceptScore W1997989901C124101348 @default.
- W1997989901 hasConceptScore W1997989901C143724316 @default.
- W1997989901 hasConceptScore W1997989901C151730666 @default.
- W1997989901 hasConceptScore W1997989901C154945302 @default.
- W1997989901 hasConceptScore W1997989901C164226766 @default.
- W1997989901 hasConceptScore W1997989901C167085575 @default.
- W1997989901 hasConceptScore W1997989901C185592680 @default.
- W1997989901 hasConceptScore W1997989901C202269582 @default.
- W1997989901 hasConceptScore W1997989901C2780009758 @default.
- W1997989901 hasConceptScore W1997989901C33923547 @default.
- W1997989901 hasConceptScore W1997989901C41008148 @default.
- W1997989901 hasConceptScore W1997989901C45942800 @default.
- W1997989901 hasConceptScore W1997989901C50644808 @default.
- W1997989901 hasConceptScore W1997989901C54355233 @default.
- W1997989901 hasConceptScore W1997989901C5465570 @default.
- W1997989901 hasConceptScore W1997989901C55493867 @default.
- W1997989901 hasConceptScore W1997989901C63479239 @default.
- W1997989901 hasConceptScore W1997989901C6557445 @default.
- W1997989901 hasConceptScore W1997989901C86803240 @default.
- W1997989901 hasFunder F4320321001 @default.
- W1997989901 hasIssue "1" @default.
- W1997989901 hasLocation W19979899011 @default.
- W1997989901 hasOpenAccess W1997989901 @default.
- W1997989901 hasPrimaryLocation W19979899011 @default.
- W1997989901 hasRelatedWork W2810053714 @default.
- W1997989901 hasRelatedWork W3025582806 @default.