Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997993463> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1997993463 endingPage "462" @default.
- W1997993463 startingPage "459" @default.
- W1997993463 abstract "Animal organ development requires that tissue patterning and differentiation is tightly coordinated with cell multiplication and cell cycle progression. Several variations of the cell cycle program are used by Drosophila cells at different stages during development [1Edgar B.A. Lehner C.F. Developmental control of cell cycle regulation a fly’s perspective.Science. 1996; 274: 1646-1652Crossref PubMed Scopus (222) Google Scholar, 2Follette P.J. O’Farrell P.H. Connecting cell behavior to patterning: lessons from the cell cycle.Cell. 1997; 88: 309-314Abstract Full Text Full Text PDF PubMed Scopus (25) Google Scholar]. In imaginal discs of developing larvae, cell cycle progression is controlled by a modified version of the well-characterized mammalian retinoblastoma (Rb) pathway [3Sherr C. Cancer cell cycles.Science. 1996; 274: 1672-1677Crossref PubMed Scopus (4822) Google Scholar, 4Dyson N. The regulation of E2F by pRB-family proteins.Genes Dev. 1998; 12: 2245-2262Crossref PubMed Scopus (1908) Google Scholar], which integrates signals from multiple effectors ranging from growth factors and receptors to small signaling molecules. Nitric oxide (NO), a multifunctional second messenger [5Bredt D.S. Snyder S.H. Nitric oxide a physiologic messenger molecule.Annu Rev Biochem. 1994; 63: 175-195Crossref PubMed Scopus (2083) Google Scholar], can reversibly suppress DNA synthesis and cell division [6Lepoivre M. Chenais B. Yapo A. Lemaire G. Thelander L. Tenu J.P. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells.J Biol Chem. 1990; 265: 14143-14149Abstract Full Text PDF PubMed Google Scholar, 7Kwon N.S. Stuehr D.J. Nathan C.F. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide.J Exp Med. 1991; 174: 761-767Crossref PubMed Scopus (401) Google Scholar]. In developing flies, the antiproliferative action of NO is essential for regulating the balance between cell proliferation and differentiation and, ultimately, the shape and size of adult structures in the fly [8Kuzin B. Roberts I. Peunova N. Enikolopov G. Nitric oxide regulates cell proliferation during Drosophila development.Cell. 1996; 87: 639-649Abstract Full Text Full Text PDF PubMed Scopus (221) Google Scholar, 9Enikolopov G. Banerji J. Kuzin B. Nitric oxide and Drosophila development.Cell Death Differ. 1999; 6: 956-963Crossref PubMed Scopus (77) Google Scholar, 10Wingrove J.A. O’Farrell P.H. Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila.Cell. 1999; 98: 105-114Abstract Full Text Full Text PDF PubMed Scopus (207) Google Scholar]. The mechanisms of the antiproliferative activity of NO in developing organisms are not known, however. We used transgenic flies expressing the Drosophila nitric oxide synthase gene (dNOS1) and/or genes encoding components of the cell cycle regulatory pathways (the Rb-like protein RBF and the E2F transcription factor complex components dE2F and dDP) combined with NOS inhibitors to address this issue. We found that manipulations of endogenous or transgenic NOS activity during imaginal disc development can enhance or suppress the effects of RBF and E2F on development of the eye. Our data suggest a role for NO in the developing imaginal eye disc via interaction with the Rb pathway." @default.
- W1997993463 created "2016-06-24" @default.
- W1997993463 creator A5021887516 @default.
- W1997993463 creator A5023704009 @default.
- W1997993463 creator A5033022509 @default.
- W1997993463 creator A5049141405 @default.
- W1997993463 creator A5049326236 @default.
- W1997993463 creator A5070435316 @default.
- W1997993463 date "2000-04-01" @default.
- W1997993463 modified "2023-10-18" @default.
- W1997993463 title "Nitric oxide interacts with the retinoblastoma pathway to control eye development in Drosophila" @default.
- W1997993463 cites W1505955094 @default.
- W1997993463 cites W1973129665 @default.
- W1997993463 cites W1984163621 @default.
- W1997993463 cites W1984814180 @default.
- W1997993463 cites W1990105179 @default.
- W1997993463 cites W2009277631 @default.
- W1997993463 cites W2015295078 @default.
- W1997993463 cites W2029080338 @default.
- W1997993463 cites W2034277114 @default.
- W1997993463 cites W2040461990 @default.
- W1997993463 cites W2041024018 @default.
- W1997993463 cites W2050526040 @default.
- W1997993463 cites W2104297552 @default.
- W1997993463 cites W2106421836 @default.
- W1997993463 cites W2139572341 @default.
- W1997993463 cites W2139587743 @default.
- W1997993463 cites W2179702494 @default.
- W1997993463 cites W339644898 @default.
- W1997993463 cites W92499928 @default.
- W1997993463 doi "https://doi.org/10.1016/s0960-9822(00)00443-7" @default.
- W1997993463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10801421" @default.
- W1997993463 hasPublicationYear "2000" @default.
- W1997993463 type Work @default.
- W1997993463 sameAs 1997993463 @default.
- W1997993463 citedByCount "44" @default.
- W1997993463 countsByYear W19979934632019 @default.
- W1997993463 countsByYear W19979934632021 @default.
- W1997993463 crossrefType "journal-article" @default.
- W1997993463 hasAuthorship W1997993463A5021887516 @default.
- W1997993463 hasAuthorship W1997993463A5023704009 @default.
- W1997993463 hasAuthorship W1997993463A5033022509 @default.
- W1997993463 hasAuthorship W1997993463A5049141405 @default.
- W1997993463 hasAuthorship W1997993463A5049326236 @default.
- W1997993463 hasAuthorship W1997993463A5070435316 @default.
- W1997993463 hasBestOaLocation W19979934631 @default.
- W1997993463 hasConcept C134018914 @default.
- W1997993463 hasConcept C1491633281 @default.
- W1997993463 hasConcept C29537977 @default.
- W1997993463 hasConcept C519581460 @default.
- W1997993463 hasConcept C54355233 @default.
- W1997993463 hasConcept C62112901 @default.
- W1997993463 hasConcept C62478195 @default.
- W1997993463 hasConcept C83258922 @default.
- W1997993463 hasConcept C86803240 @default.
- W1997993463 hasConcept C95444343 @default.
- W1997993463 hasConceptScore W1997993463C134018914 @default.
- W1997993463 hasConceptScore W1997993463C1491633281 @default.
- W1997993463 hasConceptScore W1997993463C29537977 @default.
- W1997993463 hasConceptScore W1997993463C519581460 @default.
- W1997993463 hasConceptScore W1997993463C54355233 @default.
- W1997993463 hasConceptScore W1997993463C62112901 @default.
- W1997993463 hasConceptScore W1997993463C62478195 @default.
- W1997993463 hasConceptScore W1997993463C83258922 @default.
- W1997993463 hasConceptScore W1997993463C86803240 @default.
- W1997993463 hasConceptScore W1997993463C95444343 @default.
- W1997993463 hasIssue "8" @default.
- W1997993463 hasLocation W19979934631 @default.
- W1997993463 hasLocation W19979934632 @default.
- W1997993463 hasOpenAccess W1997993463 @default.
- W1997993463 hasPrimaryLocation W19979934631 @default.
- W1997993463 hasRelatedWork W110203502 @default.
- W1997993463 hasRelatedWork W1982986056 @default.
- W1997993463 hasRelatedWork W2062057385 @default.
- W1997993463 hasRelatedWork W2083693850 @default.
- W1997993463 hasRelatedWork W2361888356 @default.
- W1997993463 hasRelatedWork W2532041 @default.
- W1997993463 hasRelatedWork W3106032671 @default.
- W1997993463 hasRelatedWork W3209090203 @default.
- W1997993463 hasRelatedWork W4244660752 @default.
- W1997993463 hasRelatedWork W4280493527 @default.
- W1997993463 hasVolume "10" @default.
- W1997993463 isParatext "false" @default.
- W1997993463 isRetracted "false" @default.
- W1997993463 magId "1997993463" @default.
- W1997993463 workType "article" @default.