Matches in SemOpenAlex for { <https://semopenalex.org/work/W1997994299> ?p ?o ?g. }
- W1997994299 endingPage "241" @default.
- W1997994299 startingPage "227" @default.
- W1997994299 abstract "A novel time series model was empirically developed to predict the stock prices.The paper aims to integrate fuzzy time series with granular computing techniques.The empirical results outperforms the SVR and Fuzzy GARCH time series models.The empirical results also outperforms the hybrid fuzzy time series models. Given the high potential benefits and impacts of accurate stock market predictions, considerable research attention has been devoted to time series forecasting for stock markets. Over long periods, the accuracy of fuzzy time series model forecasting is invariably affected by interval length, and formulating effective interval partitioning methods can be very difficult. Previous studies largely relied on distance partitioning, but this approach neglects the distribution of datasets and can only handle scalar forecasting. But the magnitude of stock price movements is often severe and difficult to predict. Thus, the distribution of stock price datasets is always skewed and the straightforward partitioning method is not well suited to these types of time series datasets. In this research, a novel fuzzy time series model is used to forecast stock market prices. The proposed model is based on the granular computing approach with binning-based partition and entropy-based discretization methods. The proposed model is verified using experimental datasets from the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), Dow-Jones Industrial Average (DJIA), S&P 500 and IBOVESPA stock indexes, and results are compared against existing fuzzy time series models, three different SVM models, and three modern economic models - GARCH, GJR-GARCH, and Fuzzy GARCH. Compared to other current forecasting methods, the proposed models provide improved prediction accuracy and the results are verified by paired two-tailed t-tests. The experimental results clearly provide improvements for obtaining optimized linguistic intervals and ensuring the accuracy of the proposed model." @default.
- W1997994299 created "2016-06-24" @default.
- W1997994299 creator A5009956295 @default.
- W1997994299 creator A5038663636 @default.
- W1997994299 date "2015-02-01" @default.
- W1997994299 modified "2023-09-30" @default.
- W1997994299 title "A hybrid fuzzy time series model based on granular computing for stock price forecasting" @default.
- W1997994299 cites W1594259338 @default.
- W1997994299 cites W1966295073 @default.
- W1997994299 cites W1971869067 @default.
- W1997994299 cites W1979575715 @default.
- W1997994299 cites W1984289858 @default.
- W1997994299 cites W1984314602 @default.
- W1997994299 cites W1991346019 @default.
- W1997994299 cites W1993503008 @default.
- W1997994299 cites W1994668012 @default.
- W1997994299 cites W1999021852 @default.
- W1997994299 cites W1999996900 @default.
- W1997994299 cites W2005382206 @default.
- W1997994299 cites W2020848494 @default.
- W1997994299 cites W2024850745 @default.
- W1997994299 cites W2027182449 @default.
- W1997994299 cites W2031404163 @default.
- W1997994299 cites W2032084149 @default.
- W1997994299 cites W2036950209 @default.
- W1997994299 cites W2037484800 @default.
- W1997994299 cites W2039935421 @default.
- W1997994299 cites W2049995592 @default.
- W1997994299 cites W2052946472 @default.
- W1997994299 cites W2053612364 @default.
- W1997994299 cites W2059112289 @default.
- W1997994299 cites W2059410401 @default.
- W1997994299 cites W2061160212 @default.
- W1997994299 cites W2063784014 @default.
- W1997994299 cites W2065410941 @default.
- W1997994299 cites W2067124365 @default.
- W1997994299 cites W2067905240 @default.
- W1997994299 cites W2069454342 @default.
- W1997994299 cites W2069803859 @default.
- W1997994299 cites W2074153186 @default.
- W1997994299 cites W2081874651 @default.
- W1997994299 cites W2083994973 @default.
- W1997994299 cites W2085463545 @default.
- W1997994299 cites W2085752583 @default.
- W1997994299 cites W2085812293 @default.
- W1997994299 cites W2086694651 @default.
- W1997994299 cites W2095574471 @default.
- W1997994299 cites W2114886147 @default.
- W1997994299 cites W2117611243 @default.
- W1997994299 cites W2118716686 @default.
- W1997994299 cites W2124532504 @default.
- W1997994299 cites W2126819771 @default.
- W1997994299 cites W2131453387 @default.
- W1997994299 cites W2136103712 @default.
- W1997994299 cites W2149159862 @default.
- W1997994299 cites W2150755414 @default.
- W1997994299 cites W2153676086 @default.
- W1997994299 cites W2168577773 @default.
- W1997994299 cites W21860402 @default.
- W1997994299 cites W2977719163 @default.
- W1997994299 cites W4241443503 @default.
- W1997994299 cites W4245152641 @default.
- W1997994299 doi "https://doi.org/10.1016/j.ins.2014.09.038" @default.
- W1997994299 hasPublicationYear "2015" @default.
- W1997994299 type Work @default.
- W1997994299 sameAs 1997994299 @default.
- W1997994299 citedByCount "186" @default.
- W1997994299 countsByYear W19979942992015 @default.
- W1997994299 countsByYear W19979942992016 @default.
- W1997994299 countsByYear W19979942992017 @default.
- W1997994299 countsByYear W19979942992018 @default.
- W1997994299 countsByYear W19979942992019 @default.
- W1997994299 countsByYear W19979942992020 @default.
- W1997994299 countsByYear W19979942992021 @default.
- W1997994299 countsByYear W19979942992022 @default.
- W1997994299 countsByYear W19979942992023 @default.
- W1997994299 crossrefType "journal-article" @default.
- W1997994299 hasAuthorship W1997994299A5009956295 @default.
- W1997994299 hasAuthorship W1997994299A5038663636 @default.
- W1997994299 hasConcept C119857082 @default.
- W1997994299 hasConcept C127313418 @default.
- W1997994299 hasConcept C127413603 @default.
- W1997994299 hasConcept C143724316 @default.
- W1997994299 hasConcept C149782125 @default.
- W1997994299 hasConcept C151406439 @default.
- W1997994299 hasConcept C151730666 @default.
- W1997994299 hasConcept C154945302 @default.
- W1997994299 hasConcept C204036174 @default.
- W1997994299 hasConcept C2988984586 @default.
- W1997994299 hasConcept C33923547 @default.
- W1997994299 hasConcept C41008148 @default.
- W1997994299 hasConcept C58166 @default.
- W1997994299 hasConcept C78519656 @default.
- W1997994299 hasConceptScore W1997994299C119857082 @default.
- W1997994299 hasConceptScore W1997994299C127313418 @default.
- W1997994299 hasConceptScore W1997994299C127413603 @default.
- W1997994299 hasConceptScore W1997994299C143724316 @default.
- W1997994299 hasConceptScore W1997994299C149782125 @default.