Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998308002> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1998308002 abstract "HomeArteriosclerosis, Thrombosis, and Vascular BiologyVol. 25, No. 9Toll-Like Receptors, Endocrine Stress Response, and Arteriosclerosis Free AccessLetterPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessLetterPDF/EPUBToll-Like Receptors, Endocrine Stress Response, and Arteriosclerosis Stefan R. Bornstein Henning Morawietz Stefan R. BornsteinStefan R. Bornstein Department of Medicine, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Germany Search for more papers by this author Henning MorawietzHenning Morawietz Division of Vascular Endothelium and Microcirculation, Department of Medicine Carl Gustav Carus, University of Technology Dresden, Germany Search for more papers by this author Originally published1 Sep 2005https://doi.org/10.1161/01.ATV.0000178996.91277.fbArteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:e135To the Editor:There is increasing evidence that Toll-like receptor (TLR)-dependent signaling and cell activation is critically involved in the pathogenesis of arteriosclerosis.The article by M. Kazemi et al impressively demonstrates that Toll-like receptor agonists induce lipid accumulation and proteins involved in atherosclerotic plaque development such as adipocyte fatty acid-binding protein (aP2) in macrophages.1 Therefore there is a molecular link between TLR and foam cell formation.While bacterial toxins activate macrophages through Toll-like receptor -2 and -4, noninfectious stimuli such as minimally oxidized LDL also use the same signaling pathways and will trigger a TLR-4–dependent proinflammatory response in macrophages.2TLR may, however, not only be a “central gateway to the vessel wall”3 and mediate the local process of arteriosclerotic plaque formation but may also relate to systemic pathomechanism of arterial disease. The endocrine stress response, including the release of glucocorticoids and the activation of the renin–angiotensin aldosterone system, is clearly implicated in the process of endothelial dysfunction and arteriosclerosis both through the increase in blood pressure and direct effects on the endothelial cell wall.We have recently demonstrated an important role for TLR-2 and TLR-4 in the adrenal stress response.4,5 TLRs are expressed in adrenal cells, and TLR agonists stimulate the release of steroids from human adrenal cells.6 TLR-2–deficient mice have an impaired steroid release during endotoxemia.5Consistent with the increased lipid accumulation and adipocyte fatty acid binding protein (aP2) expression induced by Toll-like receptor agonists described by M. Kazemi et al,1 similarly mineralocorticoids and glucocorticoids are known to enhance cholesteryl ester formation and aP2 expression.7,8 Therefore, the activation of Toll-like receptors in the pathogenesis of atherosclerosis might include an endocrine stress response as well.Thus TLR activation through both bacterial endo- or exotoxins and other noninfectious ligands will modulate arteriosclerotic plaque development not only through local immune/inflammatory actions but also through a humoral-endocrine and systemic response.1 Kazemi MR, McDonald CM, Shigenaga JK, Grunfeld C, Feingold KR. Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by toll-like receptor agonists. Arterioscler Thromb Vasc Biol. 2005; 25: 1220–1224.LinkGoogle Scholar2 Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S, Witztum JL. Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol. 2005; 25: 1213–1219.LinkGoogle Scholar3 Hansson GK, Edfeldt K. Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol. 2005; 25: 1085–1087.LinkGoogle Scholar4 Bornstein SR, Schumann RR, Rettori V, McCann SM, Zacharowski K. Toll-like receptor 2 and Toll-like receptor 4 expression in human adrenals. Horm Metab Res. 2004; 36: 470–473.CrossrefMedlineGoogle Scholar5 Bornstein SR, Zacharowski P, Schumann RR, Barthel A, Tran N, Papewalis C, Rettori V, McCann SM, Schulze-Osthoff K, Scherbaum WA, Tarnow J, Zacharowski K. Impaired adrenal stress response in Toll-like receptor 2-deficient mice. Proc Natl Acad Sci U S A. 2004; 101: 16695–16700.CrossrefMedlineGoogle Scholar6 Vakharia K, Hinson JP. Lipopolysaccharide (LPS) directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology. 2005; 146: 1398–1402.CrossrefMedlineGoogle Scholar7 Cheng W, Lau OD, Abumrad NA. Two antiatherogenic effects of progesterone on human macrophages; inhibition of cholesteryl ester synthesis and block of its enhancement by glucocorticoids. J Clin Endocrinol Metab. 1999; 84: 265–271.MedlineGoogle Scholar8 Penfornis P, Viengchareun S, Le Menuet D, Cluzeaud F, Zennaro MC, Lombes M. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab. 2000; 279: E386–E394.CrossrefMedlineGoogle ScholaratvbahaArterioscler Thromb Vasc BioArteriosclerosis, Thrombosis, and Vascular BiologyATVB1079-56421524-4636Lippincott Williams & WilkinsResponseKazemi Mahmood R., Grunfeld Carl, and Feingold Kenneth R.01092005Drs Bornstein and Morawietz report an interesting extension of our findings regarding TLR activation and expression of lipid metabolism genes in macrophages in which they describe a systemic response that promotes atherosclerosis.1 Direct activation of TLRs in the adrenal glands mediate induction of adrenocortical hormone release, which in turn may modulate foam cell formation in a manner similar to TLR ligands of microbial origin. Other systemic changes that occur during the acute phase response to infection or illness that would also promote atherosclerosis include alterations in the circulating level and composition of lipoproteins that enhance the uptake of these particles by macrophages and accelerate foam cell formation. These alterations include an increase in serum triglyceride and small dense LDL, a decrease in HDL cholesterol, and an increase in lipoprotein oxidation as well as ceramide and sphingomyelin enrichment of LDL.2 The work of Bornstein and Morawietz and others demonstrate that multiple changes in the acute phase response could contribute to the pathogenesis of atherosclerosis. Previous Back to top Next FiguresReferencesRelatedDetailsCited By Benne N, Martins Cardoso R, Boyle A, Kros A, Jiskoot W, Kuiper J, Bouwstra J, Van Eck M and Slütter B (2020) Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques, Advanced Healthcare Materials, 10.1002/adhm.202000043, 9:10, (2000043), Online publication date: 1-May-2020. Mansukhani N, Peters E, So M, Albaghdadi M, Wang Z, Karver M, Clemons T, Laux J, Tsihlis N, Stupp S and Kibbe M (2019) Peptide Amphiphile Supramolecular Nanostructures as a Targeted Therapy for Atherosclerosis, Macromolecular Bioscience, 10.1002/mabi.201900066, 19:6, (1900066), Online publication date: 1-Jun-2019. Sanina C, Bockeria O, Wiley K and Feig J (2018) Vascular Biology Endovascular Interventions, 10.1002/9781119283539.ch1, (1-15), Online publication date: 3-Dec-2018. Hien H, Ha N, Thom L and Hong D (2017) Squalene promotes cholesterol homeostasis in macrophage and hepatocyte cells via activation of liver X receptor (LXR) α and β, Biotechnology Letters, 10.1007/s10529-017-2345-y, 39:8, (1101-1107), Online publication date: 1-Aug-2017. Liberale L, Dallegri F, Montecucco F and Carbone F (2017) Pathophysiological relevance of macrophage subsets in atherogenesis, Thrombosis and Haemostasis, 10.1160/TH16-08-0593, 117:01, (07-18), . Gui Y, Yao S, Yan H, Hu L, Yu C, Gao F, Xi C, Li H, Ye Y and Wang Y (2016) A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice, Cardiovascular Research, 10.1093/cvr/cvw183, 112:1, (502-514), Online publication date: 1-Oct-2016. Kato T, Kawahito H, Kishida S, Irie D, Wakana N, Kikai M, Takata H, Ogata T, Ueyama T, Matoba S and Yamada H (2014) Bone marrow angiotensin AT 2 receptor deficiency aggravates atherosclerosis development by eliminating macrophage liver X receptor-mediated anti-atherogenic actions , Journal of the Renin-Angiotensin-Aldosterone System, 10.1177/1470320314561138, 16:4, (936-946), Online publication date: 1-Dec-2015. Zhang X, Even-Or O, Xu X, van Rosmalen M, Lim L, Gadde S, Farokhzad O and Fisher E (2014) Nanoparticles Containing a Liver X Receptor Agonist Inhibit Inflammation and Atherosclerosis, Advanced Healthcare Materials, 10.1002/adhm.201400337, 4:2, (228-236), Online publication date: 1-Jan-2015. Zanotti I, Dall'Asta M, Mena P, Mele L, Bruni R, Ray S and Del Rio D (2015) Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism, Food & Function, 10.1039/C4FO00670D, 6:1, (13-31) Getz G and Reardon C (2015) Use of Mouse Models in Atherosclerosis Research Methods in Mouse Atherosclerosis, 10.1007/978-1-4939-2929-0_1, (1-16), . Ramezani A, Dubrovsky L, Pushkarsky T, Sviridov D, Karandish S, Raj D, Fitzgerald M and Bukrinsky M (2015) Stimulation of Liver X Receptor Has Potent Anti-HIV Effects in a Humanized Mouse Model of HIV Infection, Journal of Pharmacology and Experimental Therapeutics, 10.1124/jpet.115.224485, 354:3, (376-383), Online publication date: 1-Sep-2015. Hijmans B, Tiemann C, Grefhorst A, Boesjes M, Dijk T, Tietge U, Kuipers F, Riel N, Groen A and Oosterveer M (2014) A systems biology approach reveals the physiological origin of hepatic steatosis induced by liver X receptor activation, The FASEB Journal, 10.1096/fj.14-254656, 29:4, (1153-1164), Online publication date: 1-Apr-2015. Gadde S, Even-Or O, Kamaly N, Hasija A, Gagnon P, Adusumilli K, Erakovic A, Pal A, Zhang X, Kolishetti N, Shi J, Fisher E and Farokhzad O (2014) Development of Therapeutic Polymeric Nanoparticles for the Resolution of Inflammation, Advanced Healthcare Materials, 10.1002/adhm.201300688, 3:9, (1448-1456), Online publication date: 1-Sep-2014. Van Eck M (2014) ATP-binding cassette transporter A1, Current Opinion in Lipidology, 10.1097/MOL.0000000000000088, 25:4, (297-303), Online publication date: 1-Aug-2014. Loren J, Huang Z, Laffitte B and Molteni V (2013) Liver X receptor modulators: a review of recently patented compounds (2009 – 2012), Expert Opinion on Therapeutic Patents, 10.1517/13543776.2013.814640, 23:10, (1317-1335), Online publication date: 1-Oct-2013. Mullican S, DiSpirito J and Lazar M The orphan nuclear receptors at their 25-year reunion, Journal of Molecular Endocrinology, 10.1530/JME-13-0212, 51:3, (T115-T140) Burris T, Solt L, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin D and Perez D (2013) Nuclear Receptors and Their Selective Pharmacologic Modulators, Pharmacological Reviews, 10.1124/pr.112.006833, 65:2, (710-778), Online publication date: 1-Apr-2013. Michael D, Ashlin T, Buckley M and Ramji D (2012) Liver X Receptors, Atherosclerosis and Inflammation, Current Atherosclerosis Reports, 10.1007/s11883-012-0239-y, 14:3, (284-293), Online publication date: 1-Jun-2012. Scullion P, Edwards D, McKinnon H, Miller S, Watson D and MacIntyre L (2011) Analysis of changes in triacylglycerol ratios in mouse liver and plasma in response to a liver X receptor agonist, Metabolomics, 10.1007/s11306-011-0288-1, 8:1, (74-85), Online publication date: 1-Feb-2012. Hoang M, Jia Y, Jun H, Lee J, Lee D, Hwang B, Kim W, Lee H and Lee S (2012) Ethyl 2,4,6-trihydroxybenzoate is an agonistic ligand for liver X receptor that induces cholesterol efflux from macrophages without affecting lipid accumulation in HepG2 cells, Bioorganic & Medicinal Chemistry Letters, 10.1016/j.bmcl.2012.04.071, 22:12, (4094-4099), Online publication date: 1-Jun-2012. Boyle J (2012) Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage, Current Opinion in Lipidology, 10.1097/MOL.0b013e328356b145, 23:5, (453-461), Online publication date: 1-Oct-2012. Plummer E, Thomas D, Destito G, Shriver L and Manchester M (2012) Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions, Nanomedicine, 10.2217/nnm.11.185, 7:6, (877-888), Online publication date: 1-Jun-2012. Olkkonen V (2012) Macrophage oxysterols and their binding proteins, Current Opinion in Lipidology, 10.1097/MOL.0b013e328356dba0, 23:5, (462-470), Online publication date: 1-Oct-2012. Zhang Y, Breevoort S, Angdisen J, Fu M, Schmidt D, Holmstrom S, Kliewer S, Mangelsdorf D and Schulman I (2012) Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice, Journal of Clinical Investigation, 10.1172/JCI59817, 122:5, (1688-1699), Online publication date: 1-May-2012. Zhang K, Zhang L, Zhou B, Wang Y, Song Y, Rao L and Zhang L (2012) Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis, Thrombosis Research, 10.1016/j.thromres.2012.07.008, 130:4, (e203-e208), Online publication date: 1-Oct-2012. Jiao X, Kopecky D, Fisher B, Piper D, Labelle M, McKendry S, Harrison M, Jones S, Jaen J, Shiau A, Escaron P, Danao J, Chai A, Coward P and Kayser F (2012) Discovery and optimization of a series of liver X receptor antagonists, Bioorganic & Medicinal Chemistry Letters, 10.1016/j.bmcl.2012.07.048, 22:18, (5966-5970), Online publication date: 1-Sep-2012. Peng L, Hiipakka R, Xie J, Kokontis J, Liao S and Peng D (2011) The Effect of Diet on the Response of Low-density Lipoprotein Receptor Knockout Mice to the Liver X Receptor Agonist T1317, Journal of Cardiovascular Pharmacology, 10.1097/FJC.0b013e31821d1168, 58:1, (102-110), Online publication date: 1-Jul-2011. Wollam J and Antebi A (2011) Sterol Regulation of Metabolism, Homeostasis, and Development, Annual Review of Biochemistry, 10.1146/annurev-biochem-081308-165917, 80:1, (885-916), Online publication date: 7-Jul-2011. Kurano M, Iso-O N, Hara M, Ishizaka N, Moriya K, Koike K and Tsukamoto K (2011) LXR agonist increases apoE secretion from HepG2 spheroid, together with an increased production of VLDL and apoE-rich large HDL, Lipids in Health and Disease, 10.1186/1476-511X-10-134, 10:1, Online publication date: 1-Dec-2011. Beck I, Haegeman G and De Bosscher K (2010) Molecular Cross-Talk Between Nuclear Receptors and Nuclear Factor-κB From Molecular to Modular Tumor Therapy, 10.1007/978-90-481-9531-2_10, (191-242), . Li X, Yeh V and Molteni V (2010) Liver X receptor modulators: a review of recently patented compounds (2007 – 2009), Expert Opinion on Therapeutic Patents, 10.1517/13543771003621269, 20:4, (535-562), Online publication date: 1-Apr-2010. Garenc C, Julien P and Levy E (2009) Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system, Free Radical Research, 10.3109/10715760903321804, 44:1, (47-73), Online publication date: 1-Jan-2010. Feig J, Pineda-Torra I, Sanson M, Bradley M, Vengrenyuk Y, Bogunovic D, Gautier E, Rubinstein D, Hong C, Liu J, Wu C, van Rooijen N, Bhardwaj N, Garabedian M, Tontonoz P and Fisher E (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression, Journal of Clinical Investigation, 10.1172/JCI38911, 120:12, (4415-4424), Online publication date: 1-Dec-2010. Töröcsik D, Baráth M, Benkő S, Széles L, Dezső B, Póliska S, Hegyi Z, Homolya L, Szatmári I, Lányi Á and Nagy L (2010) Activation of Liver X Receptor Sensitizes Human Dendritic Cells to Inflammatory Stimuli, The Journal of Immunology, 10.4049/jimmunol.0902399, 184:10, (5456-5465), Online publication date: 15-May-2010. Schulman I (2009) Cholesterol Worships a New Idol, Journal of Molecular Cell Biology, 10.1093/jmcb/mjp022, 1:2, (75-76), Online publication date: 1-Dec-2009. Washburn D, Hoang T, Campobasso N, Smallwood A, Parks D, Webb C, Frank K, Nord M, Duraiswami C, Evans C, Jaye M and Thompson S (2009) Synthesis and SAR of potent LXR agonists containing an indole pharmacophore, Bioorganic & Medicinal Chemistry Letters, 10.1016/j.bmcl.2009.01.004, 19:4, (1097-1100), Online publication date: 1-Feb-2009. Bennett J, Cooke A, McKinnon H and Nimz O (2008) LXR Agonists for the Treatment of Atherosclerosis: Recent Highlights , 10.1016/S0065-7743(08)00007-9, (103-119e), . Wang K and Wan Y (2008) Nuclear Receptors and Inflammatory Diseases, Experimental Biology and Medicine, 10.3181/0708-MR-231, 233:5, (496-506), Online publication date: 1-May-2008. Peng D, Hiipakka R, Dai Q, Guo J, Reardon C, Getz G and Liao S (2008) Antiatherosclerotic Effects of a Novel Synthetic Tissue-Selective Steroidal Liver X Receptor Agonist in Low-Density Lipoprotein Receptor-Deficient Mice, Journal of Pharmacology and Experimental Therapeutics, 10.1124/jpet.108.142687, 327:2, (332-342), Online publication date: 1-Nov-2008. Xiao H, Sun Z, Lu X, Li D, Xu J and Hu Y (2008) Beneficial effect of 3,4,5,6-tetrahydroxyxanthone on dyslipidemia in apolipoprotein E-deficient mice, Canadian Journal of Physiology and Pharmacology, 10.1139/Y08-091, 86:12, (815-826), Online publication date: 1-Dec-2008. Mooijaart S, Kuningas M, Westendorp R, Houwing-Duistermaat J, Slagboom P, Rensen P and van Heemst D (2007) Liver X Receptor Alpha Associates With Human Life Span, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 10.1093/gerona/62.4.343, 62:4, (343-349), Online publication date: 1-Apr-2007. Rader D (2007) Therapeutic Targeting of High‐Density Lipoproteins High‐Density Lipoproteins, 10.1002/9783527625178.ch21, (507-522), Online publication date: 20-Sep-2007. Luoma P (2009) Cytochrome P450 — physiological key factor against cholesterol accumulation and the atherosclerotic vascular process, Annals of Medicine, 10.1080/07853890701379767, 39:5, (359-370), Online publication date: 1-Jan-2007. Toth P and Gotto A (2006) High-Density Lipoprotein Cholesterol Comprehensive Management of High Risk Cardiovascular Patients, 10.3109/9781420019667.008, (295-340), Online publication date: 1-Oct-2006. Moore D, Kato S, Xie W, Mangelsdorf D, Schmidt D, Xiao R and Kliewer S (2006) International Union of Pharmacology. LXII. The NR1H and NR1I Receptors: Constitutive Androstane Receptor, Pregnene X Receptor, Farnesoid X Receptor α, Farnesoid X Receptor β, Liver X Receptor α, Liver X Receptor β, and Vitamin D Receptor, Pharmacological Reviews, 10.1124/pr.58.4.6, 58:4, (742-759), Online publication date: 1-Dec-2006. Bennett D, Brown L, Cooke A and Edwards A (2006) An update on non-steroidal liver X receptor agonists and their potential use in the treatment of atherosclerosis, Expert Opinion on Therapeutic Patents, 10.1517/13543776.16.12.1673, 16:12, (1673-1699), Online publication date: 1-Dec-2006. Quinet E, Savio D, Halpern A, Chen L, Schuster G, Gustafsson J, Basso M and Nambi P (2006) Liver X Receptor (LXR)-β Regulation in LXRα-Deficient Mice: Implications for Therapeutic Targeting, Molecular Pharmacology, 10.1124/mol.106.022608, 70:4, (1340-1349), Online publication date: 1-Oct-2006. September 2005Vol 25, Issue 9 Advertisement Article InformationMetrics https://doi.org/10.1161/01.ATV.0000178996.91277.fbPMID: 16127021 Originally publishedSeptember 1, 2005 PDF download Advertisement" @default.
- W1998308002 created "2016-06-24" @default.
- W1998308002 creator A5006906048 @default.
- W1998308002 creator A5040932572 @default.
- W1998308002 date "2005-09-01" @default.
- W1998308002 modified "2023-10-16" @default.
- W1998308002 title "Toll-Like Receptors, Endocrine Stress Response, and Arteriosclerosis" @default.
- W1998308002 cites W2022982765 @default.
- W1998308002 cites W2112861216 @default.
- W1998308002 cites W2133469256 @default.
- W1998308002 cites W2157303754 @default.
- W1998308002 cites W2159197384 @default.
- W1998308002 cites W2168392858 @default.
- W1998308002 cites W2177722383 @default.
- W1998308002 cites W2340325420 @default.
- W1998308002 doi "https://doi.org/10.1161/01.atv.0000178996.91277.fb" @default.
- W1998308002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16127021" @default.
- W1998308002 hasPublicationYear "2005" @default.
- W1998308002 type Work @default.
- W1998308002 sameAs 1998308002 @default.
- W1998308002 citedByCount "55" @default.
- W1998308002 countsByYear W19983080022012 @default.
- W1998308002 countsByYear W19983080022013 @default.
- W1998308002 countsByYear W19983080022014 @default.
- W1998308002 countsByYear W19983080022015 @default.
- W1998308002 countsByYear W19983080022016 @default.
- W1998308002 countsByYear W19983080022017 @default.
- W1998308002 countsByYear W19983080022018 @default.
- W1998308002 countsByYear W19983080022019 @default.
- W1998308002 countsByYear W19983080022020 @default.
- W1998308002 countsByYear W19983080022023 @default.
- W1998308002 crossrefType "journal-article" @default.
- W1998308002 hasAuthorship W1998308002A5006906048 @default.
- W1998308002 hasAuthorship W1998308002A5040932572 @default.
- W1998308002 hasBestOaLocation W19983080021 @default.
- W1998308002 hasConcept C104317684 @default.
- W1998308002 hasConcept C126322002 @default.
- W1998308002 hasConcept C134018914 @default.
- W1998308002 hasConcept C170493617 @default.
- W1998308002 hasConcept C203014093 @default.
- W1998308002 hasConcept C2776393769 @default.
- W1998308002 hasConcept C2778025104 @default.
- W1998308002 hasConcept C46699223 @default.
- W1998308002 hasConcept C55493867 @default.
- W1998308002 hasConcept C71315377 @default.
- W1998308002 hasConcept C71924100 @default.
- W1998308002 hasConcept C78604142 @default.
- W1998308002 hasConcept C86803240 @default.
- W1998308002 hasConceptScore W1998308002C104317684 @default.
- W1998308002 hasConceptScore W1998308002C126322002 @default.
- W1998308002 hasConceptScore W1998308002C134018914 @default.
- W1998308002 hasConceptScore W1998308002C170493617 @default.
- W1998308002 hasConceptScore W1998308002C203014093 @default.
- W1998308002 hasConceptScore W1998308002C2776393769 @default.
- W1998308002 hasConceptScore W1998308002C2778025104 @default.
- W1998308002 hasConceptScore W1998308002C46699223 @default.
- W1998308002 hasConceptScore W1998308002C55493867 @default.
- W1998308002 hasConceptScore W1998308002C71315377 @default.
- W1998308002 hasConceptScore W1998308002C71924100 @default.
- W1998308002 hasConceptScore W1998308002C78604142 @default.
- W1998308002 hasConceptScore W1998308002C86803240 @default.
- W1998308002 hasIssue "9" @default.
- W1998308002 hasLocation W19983080021 @default.
- W1998308002 hasLocation W19983080022 @default.
- W1998308002 hasOpenAccess W1998308002 @default.
- W1998308002 hasPrimaryLocation W19983080021 @default.
- W1998308002 hasRelatedWork W1987370877 @default.
- W1998308002 hasRelatedWork W2353712315 @default.
- W1998308002 hasRelatedWork W2359940423 @default.
- W1998308002 hasRelatedWork W2489749982 @default.
- W1998308002 hasRelatedWork W2757240192 @default.
- W1998308002 hasRelatedWork W3022029543 @default.
- W1998308002 hasRelatedWork W3116002356 @default.
- W1998308002 hasRelatedWork W582981267 @default.
- W1998308002 hasRelatedWork W588210059 @default.
- W1998308002 hasRelatedWork W592613903 @default.
- W1998308002 hasVolume "25" @default.
- W1998308002 isParatext "false" @default.
- W1998308002 isRetracted "false" @default.
- W1998308002 magId "1998308002" @default.
- W1998308002 workType "article" @default.