Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998521707> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1998521707 abstract "The mapping capability of artificial neural networks (ANN) is dependent on their structure, i.e., the number of layers and the number of hidden units. There is no formal way of computing network topology as a function of the complexity of a problem. It is usually selected by trial-and-error and can be rather time consuming. Basically, we make use of two mechanisms that may modify the topology of the network: growth and pruning. This paper gives an overview of some classical Growing Neural Networks (GNN) and their new developments. This kind of GNN is also called the ANN with incremental learning. Firstly, some classical GNN with supervised learning are outlined which includes tiling algorithm, tower algorithm, upstart algorithm, cascade-correlation algorithm, restricted coulomb energy network and resource-allocation network. Secondly, a class of classical GNN with unsupervised learning is reviewed, such as self-organizing surfaces, evolve self-organizing maps, incremental grid growing and growing hierarchical self-organizing map. Thirdly, the new developments of GNN, including both supervised learning and unsupervised learning, are surveyed. The conclusion is given at the end of the paper." @default.
- W1998521707 created "2016-06-24" @default.
- W1998521707 creator A5040400578 @default.
- W1998521707 creator A5058891465 @default.
- W1998521707 creator A5066955276 @default.
- W1998521707 date "2010-06-01" @default.
- W1998521707 modified "2023-09-26" @default.
- W1998521707 title "An overview of some classical Growing Neural Networks and new developments" @default.
- W1998521707 cites W1542980532 @default.
- W1998521707 cites W1551884393 @default.
- W1998521707 cites W1553807164 @default.
- W1998521707 cites W1607000056 @default.
- W1998521707 cites W2008976574 @default.
- W1998521707 cites W2009784977 @default.
- W1998521707 cites W2010150441 @default.
- W1998521707 cites W2055913343 @default.
- W1998521707 cites W2114865067 @default.
- W1998521707 cites W2118209142 @default.
- W1998521707 cites W2128033389 @default.
- W1998521707 cites W2129727551 @default.
- W1998521707 cites W2146637713 @default.
- W1998521707 cites W2407076211 @default.
- W1998521707 doi "https://doi.org/10.1109/icetc.2010.5529527" @default.
- W1998521707 hasPublicationYear "2010" @default.
- W1998521707 type Work @default.
- W1998521707 sameAs 1998521707 @default.
- W1998521707 citedByCount "10" @default.
- W1998521707 countsByYear W19985217072012 @default.
- W1998521707 countsByYear W19985217072014 @default.
- W1998521707 countsByYear W19985217072015 @default.
- W1998521707 countsByYear W19985217072018 @default.
- W1998521707 countsByYear W19985217072019 @default.
- W1998521707 crossrefType "proceedings-article" @default.
- W1998521707 hasAuthorship W1998521707A5040400578 @default.
- W1998521707 hasAuthorship W1998521707A5058891465 @default.
- W1998521707 hasAuthorship W1998521707A5066955276 @default.
- W1998521707 hasConcept C108010975 @default.
- W1998521707 hasConcept C111168008 @default.
- W1998521707 hasConcept C114614502 @default.
- W1998521707 hasConcept C119857082 @default.
- W1998521707 hasConcept C120822770 @default.
- W1998521707 hasConcept C14036430 @default.
- W1998521707 hasConcept C154945302 @default.
- W1998521707 hasConcept C184720557 @default.
- W1998521707 hasConcept C187691185 @default.
- W1998521707 hasConcept C2524010 @default.
- W1998521707 hasConcept C2777212361 @default.
- W1998521707 hasConcept C33923547 @default.
- W1998521707 hasConcept C41008148 @default.
- W1998521707 hasConcept C50644808 @default.
- W1998521707 hasConcept C6557445 @default.
- W1998521707 hasConcept C78458016 @default.
- W1998521707 hasConcept C8038995 @default.
- W1998521707 hasConcept C86803240 @default.
- W1998521707 hasConceptScore W1998521707C108010975 @default.
- W1998521707 hasConceptScore W1998521707C111168008 @default.
- W1998521707 hasConceptScore W1998521707C114614502 @default.
- W1998521707 hasConceptScore W1998521707C119857082 @default.
- W1998521707 hasConceptScore W1998521707C120822770 @default.
- W1998521707 hasConceptScore W1998521707C14036430 @default.
- W1998521707 hasConceptScore W1998521707C154945302 @default.
- W1998521707 hasConceptScore W1998521707C184720557 @default.
- W1998521707 hasConceptScore W1998521707C187691185 @default.
- W1998521707 hasConceptScore W1998521707C2524010 @default.
- W1998521707 hasConceptScore W1998521707C2777212361 @default.
- W1998521707 hasConceptScore W1998521707C33923547 @default.
- W1998521707 hasConceptScore W1998521707C41008148 @default.
- W1998521707 hasConceptScore W1998521707C50644808 @default.
- W1998521707 hasConceptScore W1998521707C6557445 @default.
- W1998521707 hasConceptScore W1998521707C78458016 @default.
- W1998521707 hasConceptScore W1998521707C8038995 @default.
- W1998521707 hasConceptScore W1998521707C86803240 @default.
- W1998521707 hasLocation W19985217071 @default.
- W1998521707 hasOpenAccess W1998521707 @default.
- W1998521707 hasPrimaryLocation W19985217071 @default.
- W1998521707 hasRelatedWork W2135217717 @default.
- W1998521707 hasRelatedWork W2292855655 @default.
- W1998521707 hasRelatedWork W2606389293 @default.
- W1998521707 hasRelatedWork W2954428433 @default.
- W1998521707 hasRelatedWork W3022038857 @default.
- W1998521707 hasRelatedWork W3196155444 @default.
- W1998521707 hasRelatedWork W4233002550 @default.
- W1998521707 hasRelatedWork W4237551280 @default.
- W1998521707 hasRelatedWork W4321635597 @default.
- W1998521707 hasRelatedWork W1905011107 @default.
- W1998521707 isParatext "false" @default.
- W1998521707 isRetracted "false" @default.
- W1998521707 magId "1998521707" @default.
- W1998521707 workType "article" @default.