Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998536469> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W1998536469 abstract "Kohonen neural networks are one of the commonly used Artificial Neural Network (ANN) for medical imaging applications. In spite of the numerous advantages, there are some demerits associated with Kohonen neural network which are mostly unexplored. Being an unsupervised neural network, they are mostly dependent on iterations which ultimately affect the accuracy of the overall system. Any iteration dependent ANN may have to face local minima problems also. In this work, this specific problem is solved by proposing a hybrid swarm intelligence- Kohonen approach. The inclusion of Particle Swarm Optimization (PSO) in the training algorithm of Kohonen network provides a convergence condition which eliminates the iteration-dependent nature of Kohonen network. The proposed methodology is tested on Magnetic Resonance (MR) brain tumor image classification. A comparative analysis with the conventional Kohonen network shows the superior nature of the proposed technique in terms of the performance measures." @default.
- W1998536469 created "2016-06-24" @default.
- W1998536469 creator A5000355426 @default.
- W1998536469 creator A5018052220 @default.
- W1998536469 creator A5044672544 @default.
- W1998536469 date "2015-09-02" @default.
- W1998536469 modified "2023-09-28" @default.
- W1998536469 title "Performance Improved Hybrid Intelligent System for Medical Image Classification" @default.
- W1998536469 cites W2044029912 @default.
- W1998536469 cites W2056597368 @default.
- W1998536469 cites W2141108785 @default.
- W1998536469 cites W2158670896 @default.
- W1998536469 cites W2508087514 @default.
- W1998536469 doi "https://doi.org/10.1145/2801081.2801095" @default.
- W1998536469 hasPublicationYear "2015" @default.
- W1998536469 type Work @default.
- W1998536469 sameAs 1998536469 @default.
- W1998536469 citedByCount "3" @default.
- W1998536469 countsByYear W19985364692017 @default.
- W1998536469 countsByYear W19985364692022 @default.
- W1998536469 countsByYear W19985364692023 @default.
- W1998536469 crossrefType "proceedings-article" @default.
- W1998536469 hasAuthorship W1998536469A5000355426 @default.
- W1998536469 hasAuthorship W1998536469A5018052220 @default.
- W1998536469 hasAuthorship W1998536469A5044672544 @default.
- W1998536469 hasConcept C115961682 @default.
- W1998536469 hasConcept C154945302 @default.
- W1998536469 hasConcept C31972630 @default.
- W1998536469 hasConcept C41008148 @default.
- W1998536469 hasConcept C75294576 @default.
- W1998536469 hasConceptScore W1998536469C115961682 @default.
- W1998536469 hasConceptScore W1998536469C154945302 @default.
- W1998536469 hasConceptScore W1998536469C31972630 @default.
- W1998536469 hasConceptScore W1998536469C41008148 @default.
- W1998536469 hasConceptScore W1998536469C75294576 @default.
- W1998536469 hasLocation W19985364691 @default.
- W1998536469 hasOpenAccess W1998536469 @default.
- W1998536469 hasPrimaryLocation W19985364691 @default.
- W1998536469 hasRelatedWork W2005185696 @default.
- W1998536469 hasRelatedWork W2092957489 @default.
- W1998536469 hasRelatedWork W2130228941 @default.
- W1998536469 hasRelatedWork W2132132164 @default.
- W1998536469 hasRelatedWork W2161229648 @default.
- W1998536469 hasRelatedWork W2235753890 @default.
- W1998536469 hasRelatedWork W2314419244 @default.
- W1998536469 hasRelatedWork W2366116130 @default.
- W1998536469 hasRelatedWork W2889893736 @default.
- W1998536469 hasRelatedWork W2993674027 @default.
- W1998536469 isParatext "false" @default.
- W1998536469 isRetracted "false" @default.
- W1998536469 magId "1998536469" @default.
- W1998536469 workType "article" @default.