Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998590944> ?p ?o ?g. }
- W1998590944 endingPage "16323" @default.
- W1998590944 startingPage "16305" @default.
- W1998590944 abstract "Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high‐level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third‐generation ECHAM3 model developed jointly by the Max Planck Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing, and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa (“transparent cirrus”) or set to 1 (“black cirrus”). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. Similar to earlier GCM studies, the changed cloud radiative heating within the troposphere has a profound impact on the model climate. Since the initial radiative forcing introduced by the changed cirrus emissivity is much smaller than the convective or dynamical response, we conclude that the tropical circulation, in particular, is maintained through a positive feedback loop involving cirrus radiative heating, deep cumulus convection, and moisture supply through the large‐scale dynamics. Since this interaction has been identified in at least two other GCMs employing different cumulus parameterizations, it does not crucially depend on the respective closure assumption. Moreover, the radiative‐convective‐dynamical coupling in the tropics is relevant also in the global warming experiment through the increase of cloud water and hence cirrus radiative heating in the warmer atmosphere. It is shown that the spin‐up of the Walker circulation in both the global warming and the increased cirrus emissivity experiments is a result of a selection process which enhances the diabatic heat source through asymmetries of the circulation itself, and the extra differential heating feeds back positively on the circulation. It is also shown that cirrus clouds have a significant influence on the global climate sensitivity of the model. In the climate change experiment with the standard model, the climate sensitivity is 20% higher than in a clear‐sky reference atmosphere because the increase of cirrus emissivity in the warmer atmosphere contributes substantially to the overall positive cloud feedback. In the transparent cirrus model the cloud feedback is negative, and the global sensitivity is reduced by 20% as compared to a clear‐sky reference atmosphere." @default.
- W1998590944 created "2016-06-24" @default.
- W1998590944 creator A5061817739 @default.
- W1998590944 creator A5064559095 @default.
- W1998590944 date "1995-08-20" @default.
- W1998590944 modified "2023-09-27" @default.
- W1998590944 title "Influence of cirrus cloud radiative forcing on climate and climate sensitivity in a general circulation model" @default.
- W1998590944 cites W1016656489 @default.
- W1998590944 cites W1476186560 @default.
- W1998590944 cites W1973690498 @default.
- W1998590944 cites W1977538616 @default.
- W1998590944 cites W1979945830 @default.
- W1998590944 cites W1986584375 @default.
- W1998590944 cites W1995286505 @default.
- W1998590944 cites W1996557447 @default.
- W1998590944 cites W1999740974 @default.
- W1998590944 cites W1999824329 @default.
- W1998590944 cites W2000412125 @default.
- W1998590944 cites W2000615294 @default.
- W1998590944 cites W2001338763 @default.
- W1998590944 cites W2008250629 @default.
- W1998590944 cites W2016331858 @default.
- W1998590944 cites W2025424726 @default.
- W1998590944 cites W2027357934 @default.
- W1998590944 cites W2032371242 @default.
- W1998590944 cites W2032503251 @default.
- W1998590944 cites W2033312520 @default.
- W1998590944 cites W2034126772 @default.
- W1998590944 cites W2037135402 @default.
- W1998590944 cites W2038600607 @default.
- W1998590944 cites W2040304169 @default.
- W1998590944 cites W2045843032 @default.
- W1998590944 cites W2046995291 @default.
- W1998590944 cites W2053811834 @default.
- W1998590944 cites W2061891867 @default.
- W1998590944 cites W2062625735 @default.
- W1998590944 cites W2068715784 @default.
- W1998590944 cites W2071005418 @default.
- W1998590944 cites W2076367950 @default.
- W1998590944 cites W2076848415 @default.
- W1998590944 cites W2082628835 @default.
- W1998590944 cites W2089727804 @default.
- W1998590944 cites W2114869867 @default.
- W1998590944 cites W2134467052 @default.
- W1998590944 cites W2140343068 @default.
- W1998590944 cites W2141446254 @default.
- W1998590944 cites W2148099617 @default.
- W1998590944 cites W2148321941 @default.
- W1998590944 cites W2174939835 @default.
- W1998590944 cites W2175098853 @default.
- W1998590944 cites W2365331582 @default.
- W1998590944 cites W4246460796 @default.
- W1998590944 cites W4251638276 @default.
- W1998590944 doi "https://doi.org/10.1029/95jd01383" @default.
- W1998590944 hasPublicationYear "1995" @default.
- W1998590944 type Work @default.
- W1998590944 sameAs 1998590944 @default.
- W1998590944 citedByCount "72" @default.
- W1998590944 countsByYear W19985909442012 @default.
- W1998590944 countsByYear W19985909442013 @default.
- W1998590944 countsByYear W19985909442014 @default.
- W1998590944 countsByYear W19985909442015 @default.
- W1998590944 countsByYear W19985909442016 @default.
- W1998590944 countsByYear W19985909442017 @default.
- W1998590944 countsByYear W19985909442018 @default.
- W1998590944 countsByYear W19985909442019 @default.
- W1998590944 countsByYear W19985909442020 @default.
- W1998590944 countsByYear W19985909442021 @default.
- W1998590944 crossrefType "journal-article" @default.
- W1998590944 hasAuthorship W1998590944A5061817739 @default.
- W1998590944 hasAuthorship W1998590944A5064559095 @default.
- W1998590944 hasBestOaLocation W19985909442 @default.
- W1998590944 hasConcept C111368507 @default.
- W1998590944 hasConcept C114203453 @default.
- W1998590944 hasConcept C120665830 @default.
- W1998590944 hasConcept C121332964 @default.
- W1998590944 hasConcept C127313418 @default.
- W1998590944 hasConcept C132651083 @default.
- W1998590944 hasConcept C153294291 @default.
- W1998590944 hasConcept C163651212 @default.
- W1998590944 hasConcept C168754636 @default.
- W1998590944 hasConcept C197115733 @default.
- W1998590944 hasConcept C2779345167 @default.
- W1998590944 hasConcept C2781448682 @default.
- W1998590944 hasConcept C27896171 @default.
- W1998590944 hasConcept C39432304 @default.
- W1998590944 hasConcept C42952880 @default.
- W1998590944 hasConcept C49204034 @default.
- W1998590944 hasConcept C54464151 @default.
- W1998590944 hasConcept C62520636 @default.
- W1998590944 hasConcept C74902906 @default.
- W1998590944 hasConcept C91586092 @default.
- W1998590944 hasConcept C99578197 @default.
- W1998590944 hasConceptScore W1998590944C111368507 @default.
- W1998590944 hasConceptScore W1998590944C114203453 @default.
- W1998590944 hasConceptScore W1998590944C120665830 @default.
- W1998590944 hasConceptScore W1998590944C121332964 @default.
- W1998590944 hasConceptScore W1998590944C127313418 @default.