Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998759976> ?p ?o ?g. }
- W1998759976 abstract "Motivated by observations of solitary waves in the ocean and atmosphere, this paper considers the evolution of long weakly nonlinear internal waves in an incompressible Boussinesq fluid. The motion is restricted to the vertical plane. The basic state consists of stable horizontal shear flow and density stratification. On a long time scale, the waves evolve and reach a quasi-steady régime where weak nonlinearity and weak dispersion are in balance. In many circumstances, this régime is described by a Korteweg-de-Vries equation. However, when the linear long-wave speed equals the basic flow velocity at a certain height, the critical level, the traditional assumption of weak nonlinearity breaks down due to the appearance of a singularity in the leading-order modal equation, implying a strong modification of the flow in the so-called critical layer. Since the relevant geophysical flows have high Reynolds and Péclet numbers, we invoke nonlinear effects to resolve this singularity. Viscosity and thermal conductivity are considered small but finite. Their presence renders the nonlinear-critical-layer solution unique. Crucially, the density stratification degree is assumed small at the critical level; this has the consequence that the leading-order singularity is then identical to that in an unstratified flow. Thus the asymptotic methodology employed previously for that case can be adapted to this present study. In this critical layer, the flow is fully nonlinear but laminar and quasi-steady, with a strong rearrangement of the buoyancy and vorticity contours. This inner flow is matched at the edges of the critical layer with the outer flow. The final outcome for spatially localized solutions is an integro-differential evolution equation, whose form depends on the critical-layer shape, and especially on the wave polarity, that is, depression or elevation. For a steady travelling wave, this evolution equation when expressed in terms of the streamfunction amplitude is not a Korteweg-de Vries equation, as it contains additional nonlinear terms necessary at a certain order of the asymptotic expansion when matching with the inner flow. However, this steady evolution equation can be transformed with an appropriate change of variables into a Korteweg-de-Vries equation. An analysis of the wave mean flow interaction is given. The horizontal basic stable flow is altered at the critical level at a slow viscous time scale by the nonlinear D-wave in the quasi-steady state régime. In most cases, the mean kinetic energy is likely to decay at the same time scale. The D-wave critical-layer thickness is found inversely proportional to the amplitude of the leading-order viscous outer flow. The D-wave critical-layer symmetry vis-à-vis the critical level is broken; the departure is proportional to the local Richardson number, and so is greater than the analogous asymmetry encountered in an unstratified shear flow. The mean flow horizontal momentum and kinetic energy are unchanged by the nonlinear E-wave in the quasi-steady régime, the exchanges taking place only during the formation of the critical layer and in the transition régime when the nonlinear E-wave is unsteady." @default.
- W1998759976 created "2016-06-24" @default.
- W1998759976 creator A5004015906 @default.
- W1998759976 creator A5067003420 @default.
- W1998759976 date "2012-05-01" @default.
- W1998759976 modified "2023-10-17" @default.
- W1998759976 title "Internal solitary waves with a weakly stratified critical layer" @default.
- W1998759976 cites W1542993171 @default.
- W1998759976 cites W1641358442 @default.
- W1998759976 cites W1845882504 @default.
- W1998759976 cites W1972737125 @default.
- W1998759976 cites W1979878372 @default.
- W1998759976 cites W1984413198 @default.
- W1998759976 cites W1988497189 @default.
- W1998759976 cites W2000757858 @default.
- W1998759976 cites W2002717829 @default.
- W1998759976 cites W2011161774 @default.
- W1998759976 cites W2017428010 @default.
- W1998759976 cites W2018384628 @default.
- W1998759976 cites W2020290230 @default.
- W1998759976 cites W2045306030 @default.
- W1998759976 cites W2046585309 @default.
- W1998759976 cites W2050172165 @default.
- W1998759976 cites W2059251011 @default.
- W1998759976 cites W2061164036 @default.
- W1998759976 cites W2068321768 @default.
- W1998759976 cites W2074848257 @default.
- W1998759976 cites W2094530987 @default.
- W1998759976 cites W2118606391 @default.
- W1998759976 cites W2130445119 @default.
- W1998759976 cites W2133985633 @default.
- W1998759976 cites W2140809812 @default.
- W1998759976 cites W2143839575 @default.
- W1998759976 cites W2144636071 @default.
- W1998759976 cites W2148988209 @default.
- W1998759976 cites W2151296791 @default.
- W1998759976 cites W2160203263 @default.
- W1998759976 cites W2162783556 @default.
- W1998759976 cites W2163608263 @default.
- W1998759976 cites W2171215875 @default.
- W1998759976 cites W2221450485 @default.
- W1998759976 cites W22232138 @default.
- W1998759976 cites W2255926955 @default.
- W1998759976 cites W3123286090 @default.
- W1998759976 cites W37834841 @default.
- W1998759976 cites W4254520956 @default.
- W1998759976 doi "https://doi.org/10.1063/1.4704815" @default.
- W1998759976 hasPublicationYear "2012" @default.
- W1998759976 type Work @default.
- W1998759976 sameAs 1998759976 @default.
- W1998759976 citedByCount "10" @default.
- W1998759976 countsByYear W19987599762012 @default.
- W1998759976 countsByYear W19987599762014 @default.
- W1998759976 countsByYear W19987599762017 @default.
- W1998759976 countsByYear W19987599762019 @default.
- W1998759976 countsByYear W19987599762021 @default.
- W1998759976 countsByYear W19987599762022 @default.
- W1998759976 crossrefType "journal-article" @default.
- W1998759976 hasAuthorship W1998759976A5004015906 @default.
- W1998759976 hasAuthorship W1998759976A5067003420 @default.
- W1998759976 hasBestOaLocation W19987599762 @default.
- W1998759976 hasConcept C121332964 @default.
- W1998759976 hasConcept C134306372 @default.
- W1998759976 hasConcept C135768490 @default.
- W1998759976 hasConcept C140820882 @default.
- W1998759976 hasConcept C146864707 @default.
- W1998759976 hasConcept C157331469 @default.
- W1998759976 hasConcept C158622935 @default.
- W1998759976 hasConcept C16171025 @default.
- W1998759976 hasConcept C182748727 @default.
- W1998759976 hasConcept C196558001 @default.
- W1998759976 hasConcept C200114574 @default.
- W1998759976 hasConcept C205904022 @default.
- W1998759976 hasConcept C2776310255 @default.
- W1998759976 hasConcept C2779729707 @default.
- W1998759976 hasConcept C33923547 @default.
- W1998759976 hasConcept C57879066 @default.
- W1998759976 hasConcept C62520636 @default.
- W1998759976 hasConcept C74650414 @default.
- W1998759976 hasConcept C76563973 @default.
- W1998759976 hasConcept C86252789 @default.
- W1998759976 hasConceptScore W1998759976C121332964 @default.
- W1998759976 hasConceptScore W1998759976C134306372 @default.
- W1998759976 hasConceptScore W1998759976C135768490 @default.
- W1998759976 hasConceptScore W1998759976C140820882 @default.
- W1998759976 hasConceptScore W1998759976C146864707 @default.
- W1998759976 hasConceptScore W1998759976C157331469 @default.
- W1998759976 hasConceptScore W1998759976C158622935 @default.
- W1998759976 hasConceptScore W1998759976C16171025 @default.
- W1998759976 hasConceptScore W1998759976C182748727 @default.
- W1998759976 hasConceptScore W1998759976C196558001 @default.
- W1998759976 hasConceptScore W1998759976C200114574 @default.
- W1998759976 hasConceptScore W1998759976C205904022 @default.
- W1998759976 hasConceptScore W1998759976C2776310255 @default.
- W1998759976 hasConceptScore W1998759976C2779729707 @default.
- W1998759976 hasConceptScore W1998759976C33923547 @default.
- W1998759976 hasConceptScore W1998759976C57879066 @default.
- W1998759976 hasConceptScore W1998759976C62520636 @default.
- W1998759976 hasConceptScore W1998759976C74650414 @default.
- W1998759976 hasConceptScore W1998759976C76563973 @default.