Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998854865> ?p ?o ?g. }
- W1998854865 endingPage "331" @default.
- W1998854865 startingPage "322" @default.
- W1998854865 abstract "Genetic variation complicates predictions of both the initial tolerance and the long-term (micro-evolutionary) response of natural Daphnia populations to chemical stressors from results of standard single-clone laboratory ecotoxicity tests. In order to investigate possible solutions to this problem, we aimed to compare the initial sub-lethal tolerance to Cd of 10 naïve natural pond populations of Daphnia magna as well as their evolutionary potential to develop increased resistance. We did so by measuring reproductive performance of 120 clones, i.e. 12 clones hatched from the recent dormant egg bank of each of 10 populations, both in absence (Cd-free control) and presence of 4.4 μg Cd/L. We show that the initial tolerance, defined as the reproductive performance of individuals of the first generation exposed to Cd relative to that in a Cd-free control was not significantly different among the 10 studied pond populations and averaged 0.82 ± 0.04 over these populations. Moreover, these populations’ initial tolerances were also not significantly different from the mean initial tolerance of 0.87 ± 0.08 at 4.0 μg Cd/L measured for a group of 7 often-used laboratory clones, collected from a range of European ecotoxicity testing laboratories. This indicates that the initial response of naïve natural pond populations to sub-lethal Cd can be relatively accurately predicted from ecotoxicity test data from only a handful of laboratory clones. We then used estimates of broad-sense heritability of Cd tolerance (H2) – based on the same dataset – as a proxy of these populations’ capacities to evolutionarily respond to Cd in terms of the development of increased resistance, which is here defined as the increase with time of the frequency of clones with a higher Cd tolerance in the population (accompanied with an increase of mean Cd-tolerance of the population above the initial tolerance). We show that the populations’ estimated H2 values of Cd-tolerance cover almost the entire theoretically possible range, ranging from not significantly different from zero (for five populations) to between 0.48 and 0.81 (for the five other populations). This indicates that, unlike the initial tolerance to Cd, the (long-term) micro-evolutionary response to Cd may be very different among natural pond populations. Therefore, we conclude that it may be very difficult to predict the long-term response of an unstudied population to chemical stress from tolerance data on a sample of other populations. It is therefore suggested that new methods for forecasting long-term responses should be explored, such as the development of predictive models based on the combination of population-genomic and tolerance time-series data." @default.
- W1998854865 created "2016-06-24" @default.
- W1998854865 creator A5025616848 @default.
- W1998854865 creator A5040408094 @default.
- W1998854865 creator A5043746667 @default.
- W1998854865 creator A5063448936 @default.
- W1998854865 date "2013-11-01" @default.
- W1998854865 modified "2023-10-18" @default.
- W1998854865 title "The initial tolerance to sub-lethal Cd exposure is the same among ten naïve pond populations of Daphnia magna, but their micro-evolutionary potential to develop resistance is very different" @default.
- W1998854865 cites W1963527614 @default.
- W1998854865 cites W1990699110 @default.
- W1998854865 cites W2001432305 @default.
- W1998854865 cites W2011838457 @default.
- W1998854865 cites W2012288872 @default.
- W1998854865 cites W2013323473 @default.
- W1998854865 cites W2017824729 @default.
- W1998854865 cites W2018115957 @default.
- W1998854865 cites W2029459441 @default.
- W1998854865 cites W2032368539 @default.
- W1998854865 cites W2036200339 @default.
- W1998854865 cites W2040971489 @default.
- W1998854865 cites W2043844855 @default.
- W1998854865 cites W2047944982 @default.
- W1998854865 cites W2055984320 @default.
- W1998854865 cites W2056506293 @default.
- W1998854865 cites W2061777110 @default.
- W1998854865 cites W2061868406 @default.
- W1998854865 cites W2063980343 @default.
- W1998854865 cites W2070704344 @default.
- W1998854865 cites W2071069147 @default.
- W1998854865 cites W2071386160 @default.
- W1998854865 cites W2076011152 @default.
- W1998854865 cites W2080916622 @default.
- W1998854865 cites W2081663707 @default.
- W1998854865 cites W2082017631 @default.
- W1998854865 cites W2086799994 @default.
- W1998854865 cites W2087917611 @default.
- W1998854865 cites W2094016308 @default.
- W1998854865 cites W2094067041 @default.
- W1998854865 cites W2098963801 @default.
- W1998854865 cites W2101166680 @default.
- W1998854865 cites W2120792332 @default.
- W1998854865 cites W2126060822 @default.
- W1998854865 cites W2129284154 @default.
- W1998854865 cites W2141950162 @default.
- W1998854865 cites W2152704830 @default.
- W1998854865 cites W2168357045 @default.
- W1998854865 cites W2333706574 @default.
- W1998854865 cites W2595467933 @default.
- W1998854865 cites W4238614302 @default.
- W1998854865 doi "https://doi.org/10.1016/j.aquatox.2013.10.016" @default.
- W1998854865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24211796" @default.
- W1998854865 hasPublicationYear "2013" @default.
- W1998854865 type Work @default.
- W1998854865 sameAs 1998854865 @default.
- W1998854865 citedByCount "19" @default.
- W1998854865 countsByYear W19988548652014 @default.
- W1998854865 countsByYear W19988548652015 @default.
- W1998854865 countsByYear W19988548652016 @default.
- W1998854865 countsByYear W19988548652017 @default.
- W1998854865 countsByYear W19988548652018 @default.
- W1998854865 countsByYear W19988548652019 @default.
- W1998854865 countsByYear W19988548652020 @default.
- W1998854865 countsByYear W19988548652021 @default.
- W1998854865 countsByYear W19988548652022 @default.
- W1998854865 crossrefType "journal-article" @default.
- W1998854865 hasAuthorship W1998854865A5025616848 @default.
- W1998854865 hasAuthorship W1998854865A5040408094 @default.
- W1998854865 hasAuthorship W1998854865A5043746667 @default.
- W1998854865 hasAuthorship W1998854865A5063448936 @default.
- W1998854865 hasBestOaLocation W19988548652 @default.
- W1998854865 hasConcept C115346097 @default.
- W1998854865 hasConcept C161890455 @default.
- W1998854865 hasConcept C178790620 @default.
- W1998854865 hasConcept C185592680 @default.
- W1998854865 hasConcept C18903297 @default.
- W1998854865 hasConcept C2776987104 @default.
- W1998854865 hasConcept C2778208666 @default.
- W1998854865 hasConcept C2780158794 @default.
- W1998854865 hasConcept C2780187675 @default.
- W1998854865 hasConcept C29730261 @default.
- W1998854865 hasConcept C33070731 @default.
- W1998854865 hasConcept C46797941 @default.
- W1998854865 hasConcept C54355233 @default.
- W1998854865 hasConcept C84766238 @default.
- W1998854865 hasConcept C86803240 @default.
- W1998854865 hasConcept C90856448 @default.
- W1998854865 hasConceptScore W1998854865C115346097 @default.
- W1998854865 hasConceptScore W1998854865C161890455 @default.
- W1998854865 hasConceptScore W1998854865C178790620 @default.
- W1998854865 hasConceptScore W1998854865C185592680 @default.
- W1998854865 hasConceptScore W1998854865C18903297 @default.
- W1998854865 hasConceptScore W1998854865C2776987104 @default.
- W1998854865 hasConceptScore W1998854865C2778208666 @default.
- W1998854865 hasConceptScore W1998854865C2780158794 @default.
- W1998854865 hasConceptScore W1998854865C2780187675 @default.
- W1998854865 hasConceptScore W1998854865C29730261 @default.
- W1998854865 hasConceptScore W1998854865C33070731 @default.