Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998865404> ?p ?o ?g. }
- W1998865404 endingPage "1002" @default.
- W1998865404 startingPage "990" @default.
- W1998865404 abstract "Breast cancer is regarded as one of the most frequent mortality causes among women. As early detection of breast cancer increases the survival chance, creation of a system to diagnose suspicious masses in mammograms is important. In this paper, two automated methods are presented to diagnose mass types of benign and malignant in mammograms. In the first proposed method, segmentation is done using an automated region growing whose threshold is obtained by a trained artificial neural network (ANN). In the second proposed method, segmentation is performed by a cellular neural network (CNN) whose parameters are determined by a genetic algorithm (GA). Intensity, textural, and shape features are extracted from segmented tumors. GA is used to select appropriate features from the set of extracted features. In the next stage, ANNs are used to classify the mammograms as benign or malignant. To evaluate the performance of the proposed methods different classifiers (such as random forest, naïve Bayes, SVM, and KNN) are used. Results of the proposed techniques performed on MIAS and DDSM databases are promising. The obtained sensitivity, specificity, and accuracy rates are 96.87%, 95.94%, and 96.47%, respectively." @default.
- W1998865404 created "2016-06-24" @default.
- W1998865404 creator A5012933659 @default.
- W1998865404 creator A5063405271 @default.
- W1998865404 creator A5064146594 @default.
- W1998865404 creator A5069102475 @default.
- W1998865404 date "2015-02-01" @default.
- W1998865404 modified "2023-10-18" @default.
- W1998865404 title "Benign and malignant breast tumors classification based on region growing and CNN segmentation" @default.
- W1998865404 cites W1968114652 @default.
- W1998865404 cites W1972536364 @default.
- W1998865404 cites W1972626213 @default.
- W1998865404 cites W1979577627 @default.
- W1998865404 cites W1987869189 @default.
- W1998865404 cites W1991391560 @default.
- W1998865404 cites W1991892339 @default.
- W1998865404 cites W1998150121 @default.
- W1998865404 cites W2000054543 @default.
- W1998865404 cites W2001297728 @default.
- W1998865404 cites W2009022232 @default.
- W1998865404 cites W2009888820 @default.
- W1998865404 cites W2015770235 @default.
- W1998865404 cites W2025638095 @default.
- W1998865404 cites W2026268783 @default.
- W1998865404 cites W2030814277 @default.
- W1998865404 cites W2033856996 @default.
- W1998865404 cites W2035009069 @default.
- W1998865404 cites W2042848874 @default.
- W1998865404 cites W2046600620 @default.
- W1998865404 cites W2055783626 @default.
- W1998865404 cites W2056515096 @default.
- W1998865404 cites W2056717940 @default.
- W1998865404 cites W2062874011 @default.
- W1998865404 cites W2063572467 @default.
- W1998865404 cites W2072255968 @default.
- W1998865404 cites W2076640017 @default.
- W1998865404 cites W2078358607 @default.
- W1998865404 cites W2089760990 @default.
- W1998865404 cites W2089927030 @default.
- W1998865404 cites W2103233037 @default.
- W1998865404 cites W2106258330 @default.
- W1998865404 cites W2109597745 @default.
- W1998865404 cites W2113115183 @default.
- W1998865404 cites W2113641540 @default.
- W1998865404 cites W2120580182 @default.
- W1998865404 cites W2122429839 @default.
- W1998865404 cites W2138358654 @default.
- W1998865404 cites W2146507164 @default.
- W1998865404 cites W2147595228 @default.
- W1998865404 cites W2152687346 @default.
- W1998865404 cites W2154053567 @default.
- W1998865404 doi "https://doi.org/10.1016/j.eswa.2014.09.020" @default.
- W1998865404 hasPublicationYear "2015" @default.
- W1998865404 type Work @default.
- W1998865404 sameAs 1998865404 @default.
- W1998865404 citedByCount "279" @default.
- W1998865404 countsByYear W19988654042015 @default.
- W1998865404 countsByYear W19988654042016 @default.
- W1998865404 countsByYear W19988654042017 @default.
- W1998865404 countsByYear W19988654042018 @default.
- W1998865404 countsByYear W19988654042019 @default.
- W1998865404 countsByYear W19988654042020 @default.
- W1998865404 countsByYear W19988654042021 @default.
- W1998865404 countsByYear W19988654042022 @default.
- W1998865404 countsByYear W19988654042023 @default.
- W1998865404 crossrefType "journal-article" @default.
- W1998865404 hasAuthorship W1998865404A5012933659 @default.
- W1998865404 hasAuthorship W1998865404A5063405271 @default.
- W1998865404 hasAuthorship W1998865404A5064146594 @default.
- W1998865404 hasAuthorship W1998865404A5069102475 @default.
- W1998865404 hasConcept C121608353 @default.
- W1998865404 hasConcept C12267149 @default.
- W1998865404 hasConcept C126322002 @default.
- W1998865404 hasConcept C153180895 @default.
- W1998865404 hasConcept C154945302 @default.
- W1998865404 hasConcept C169258074 @default.
- W1998865404 hasConcept C2780472235 @default.
- W1998865404 hasConcept C41008148 @default.
- W1998865404 hasConcept C50644808 @default.
- W1998865404 hasConcept C52001869 @default.
- W1998865404 hasConcept C530470458 @default.
- W1998865404 hasConcept C71924100 @default.
- W1998865404 hasConcept C89600930 @default.
- W1998865404 hasConceptScore W1998865404C121608353 @default.
- W1998865404 hasConceptScore W1998865404C12267149 @default.
- W1998865404 hasConceptScore W1998865404C126322002 @default.
- W1998865404 hasConceptScore W1998865404C153180895 @default.
- W1998865404 hasConceptScore W1998865404C154945302 @default.
- W1998865404 hasConceptScore W1998865404C169258074 @default.
- W1998865404 hasConceptScore W1998865404C2780472235 @default.
- W1998865404 hasConceptScore W1998865404C41008148 @default.
- W1998865404 hasConceptScore W1998865404C50644808 @default.
- W1998865404 hasConceptScore W1998865404C52001869 @default.
- W1998865404 hasConceptScore W1998865404C530470458 @default.
- W1998865404 hasConceptScore W1998865404C71924100 @default.
- W1998865404 hasConceptScore W1998865404C89600930 @default.
- W1998865404 hasIssue "3" @default.
- W1998865404 hasLocation W19988654041 @default.