Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998939478> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1998939478 endingPage "2426" @default.
- W1998939478 startingPage "2421" @default.
- W1998939478 abstract "Highlights? ANN model accurately predicts exhaust emissions with minimal inputs. ? ANN optimization-layer-by-layer model proves to be the most accurate. ? Models act as virtual emission sensor without the need of additional equipment. ? A single ECU is just needed to predict the engine parameters and emission. ? The generic two-stage ANN model is applicable to any ICE vehicle applications. This paper presents a two-stage emissions predictive model developed by investigating common feedforward neural network models. The first stage model involves predicting engine parameters power and tractive forces and the predicted parameters are used as inputs to the second stage model to predict the vehicle emissions. The following gasses were predicted from the tailpipe emissions for a scooter application; CO, CO2, HC and O2. Three feedforward neural network models were investigated and compared in this study; backpropagation, optimization layer-by-layer and radial basis function networks. Based on the experimental setup, the neural network models were trained and tested to accurately predict the effect of the engine operating conditions on the emissions by varying the number of hidden nodes. The selected optimization layer-by-layer network proved to be the most accurate and reliable predictive tool with prediction errors of ?5%. The effect of the engine operating conditions on the tailpipe emissions for a scooter is shown to display similar qualitative and quantitative trends between the simulated and the experimental data. This study provides a better understanding in effects of engine process parameters on tailpipe emissions for the scooter as well as for general vehicular applications." @default.
- W1998939478 created "2016-06-24" @default.
- W1998939478 creator A5018439784 @default.
- W1998939478 creator A5085350356 @default.
- W1998939478 date "2012-02-01" @default.
- W1998939478 modified "2023-09-25" @default.
- W1998939478 title "Emissions predictive modelling by investigating various neural network models" @default.
- W1998939478 cites W1969868418 @default.
- W1998939478 cites W1978472748 @default.
- W1998939478 cites W1986972444 @default.
- W1998939478 cites W1992944029 @default.
- W1998939478 cites W1998023780 @default.
- W1998939478 cites W1999209109 @default.
- W1998939478 cites W2001270798 @default.
- W1998939478 cites W2024597787 @default.
- W1998939478 cites W2069334691 @default.
- W1998939478 cites W2072629689 @default.
- W1998939478 cites W2081590640 @default.
- W1998939478 cites W2109189741 @default.
- W1998939478 cites W2145875545 @default.
- W1998939478 cites W2147457295 @default.
- W1998939478 doi "https://doi.org/10.1016/j.eswa.2011.08.091" @default.
- W1998939478 hasPublicationYear "2012" @default.
- W1998939478 type Work @default.
- W1998939478 sameAs 1998939478 @default.
- W1998939478 citedByCount "24" @default.
- W1998939478 countsByYear W19989394782012 @default.
- W1998939478 countsByYear W19989394782013 @default.
- W1998939478 countsByYear W19989394782014 @default.
- W1998939478 countsByYear W19989394782015 @default.
- W1998939478 countsByYear W19989394782018 @default.
- W1998939478 countsByYear W19989394782019 @default.
- W1998939478 countsByYear W19989394782020 @default.
- W1998939478 countsByYear W19989394782021 @default.
- W1998939478 countsByYear W19989394782022 @default.
- W1998939478 countsByYear W19989394782023 @default.
- W1998939478 crossrefType "journal-article" @default.
- W1998939478 hasAuthorship W1998939478A5018439784 @default.
- W1998939478 hasAuthorship W1998939478A5085350356 @default.
- W1998939478 hasConcept C119857082 @default.
- W1998939478 hasConcept C154945302 @default.
- W1998939478 hasConcept C41008148 @default.
- W1998939478 hasConcept C50644808 @default.
- W1998939478 hasConceptScore W1998939478C119857082 @default.
- W1998939478 hasConceptScore W1998939478C154945302 @default.
- W1998939478 hasConceptScore W1998939478C41008148 @default.
- W1998939478 hasConceptScore W1998939478C50644808 @default.
- W1998939478 hasIssue "3" @default.
- W1998939478 hasLocation W19989394781 @default.
- W1998939478 hasOpenAccess W1998939478 @default.
- W1998939478 hasPrimaryLocation W19989394781 @default.
- W1998939478 hasRelatedWork W2386387936 @default.
- W1998939478 hasRelatedWork W2961085424 @default.
- W1998939478 hasRelatedWork W3046775127 @default.
- W1998939478 hasRelatedWork W3107474891 @default.
- W1998939478 hasRelatedWork W4205958290 @default.
- W1998939478 hasRelatedWork W4286629047 @default.
- W1998939478 hasRelatedWork W4306321456 @default.
- W1998939478 hasRelatedWork W4306674287 @default.
- W1998939478 hasRelatedWork W1629725936 @default.
- W1998939478 hasRelatedWork W4224009465 @default.
- W1998939478 hasVolume "39" @default.
- W1998939478 isParatext "false" @default.
- W1998939478 isRetracted "false" @default.
- W1998939478 magId "1998939478" @default.
- W1998939478 workType "article" @default.