Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998977947> ?p ?o ?g. }
- W1998977947 endingPage "6477" @default.
- W1998977947 startingPage "6468" @default.
- W1998977947 abstract "The TLS model has been quite successful in the description of the anomalous low-temperature properties of glasses. It also predicts that these properties are time dependent, which has indeed been shown to be the case. 5,6 This effect has been attributed to the existence of a broad distribution of rates in the glass at which the tunneling processes occur. The optical properties of a chromophore dissolved in a glass are dependent on dynamical processes in the direct vicinity of the chromophore. Therefore, these optical properties will also be time dependent. A number of optical techniques have been employed to explore the dynamics of the chromophores on different time scales and thus probe the distribution of rates of tunneling processes. Most notably hole burning, photon echo, and singlemolecule spectroscopy have been employed to probe glass dynamics on a range of time scales spanning up to 18 orders of magnitude. This allows for the investigation of the particular nature of the TLS’s. These so-called optical line-narrowing experiments provide a pivotal test for the adequacy of the TLS model in describing glass dynamics. However, the interpretation of chromophore dynamics in amorphous solids is frustrated by qualitative and quantitative discrepancies between the results rendered by different techniques. Thus, although separate results are in qualitative agreement with the TLS model, the quantitative discrepancies between results rendered by different techniques indicated the need for further refinement of the TLS model. Notwithstanding these problems, the concept of low-energy excitations being accountable for the properties of amorphous solids is well accepted. At the same time it is clear that the interpretation of experimental results has to be done with great caution. Indeed the optical dynamical properties can be influenced by various inconspicuous parameters in the experiments. Examples are the cooling history of the sample, the particular subset of chromophores selected in an experiment, 7,8 and also, as was recently pointed out, 9,10 laser fluence. In this paper we revisit the effect of laser fluence on the observed optical dynamics and confirm earlier conclusions regarding its importance in optical dephasing experiments. We further show that optically induced spectral diffusion, an effect unrelated to laser fluence, is of significant importance to the interpretation of all optical line-narrowing techniques. This finding points at the inadequacy of the currently used weakcoupling chromophore-TLS model for a complete description of glass dynamics." @default.
- W1998977947 created "2016-06-24" @default.
- W1998977947 creator A5021355135 @default.
- W1998977947 creator A5084846133 @default.
- W1998977947 creator A5088248960 @default.
- W1998977947 date "2000-06-20" @default.
- W1998977947 modified "2023-09-28" @default.
- W1998977947 title "Ethanol Glass Dynamics: Logarithmic Line Broadening and Optically Induced Dephasing" @default.
- W1998977947 cites W1816832116 @default.
- W1998977947 cites W1968244042 @default.
- W1998977947 cites W1973103223 @default.
- W1998977947 cites W1973105943 @default.
- W1998977947 cites W1975064529 @default.
- W1998977947 cites W1977667243 @default.
- W1998977947 cites W1978902636 @default.
- W1998977947 cites W1979662729 @default.
- W1998977947 cites W1979695576 @default.
- W1998977947 cites W1980717004 @default.
- W1998977947 cites W1982044956 @default.
- W1998977947 cites W1982854150 @default.
- W1998977947 cites W1983265012 @default.
- W1998977947 cites W1984518891 @default.
- W1998977947 cites W1988393605 @default.
- W1998977947 cites W1988586571 @default.
- W1998977947 cites W1989259462 @default.
- W1998977947 cites W1989603844 @default.
- W1998977947 cites W1990039381 @default.
- W1998977947 cites W1991190261 @default.
- W1998977947 cites W1993036859 @default.
- W1998977947 cites W1996217965 @default.
- W1998977947 cites W2016984849 @default.
- W1998977947 cites W2020527137 @default.
- W1998977947 cites W2021688109 @default.
- W1998977947 cites W2023088776 @default.
- W1998977947 cites W2025300134 @default.
- W1998977947 cites W2026184732 @default.
- W1998977947 cites W2027728725 @default.
- W1998977947 cites W2029358865 @default.
- W1998977947 cites W2030359304 @default.
- W1998977947 cites W2033029738 @default.
- W1998977947 cites W2033539879 @default.
- W1998977947 cites W2033619309 @default.
- W1998977947 cites W2033648342 @default.
- W1998977947 cites W2034059915 @default.
- W1998977947 cites W2034924154 @default.
- W1998977947 cites W2035996308 @default.
- W1998977947 cites W2036795006 @default.
- W1998977947 cites W2037107062 @default.
- W1998977947 cites W2038850221 @default.
- W1998977947 cites W2039299047 @default.
- W1998977947 cites W2039785170 @default.
- W1998977947 cites W2040135731 @default.
- W1998977947 cites W2046567280 @default.
- W1998977947 cites W2049085953 @default.
- W1998977947 cites W2049438351 @default.
- W1998977947 cites W2049797534 @default.
- W1998977947 cites W2051197648 @default.
- W1998977947 cites W2054947925 @default.
- W1998977947 cites W2056623958 @default.
- W1998977947 cites W2065415792 @default.
- W1998977947 cites W2066940896 @default.
- W1998977947 cites W2069006857 @default.
- W1998977947 cites W2069179169 @default.
- W1998977947 cites W2071211073 @default.
- W1998977947 cites W2073406140 @default.
- W1998977947 cites W2073552892 @default.
- W1998977947 cites W2074121263 @default.
- W1998977947 cites W2076006951 @default.
- W1998977947 cites W2076086432 @default.
- W1998977947 cites W2078443205 @default.
- W1998977947 cites W2082737839 @default.
- W1998977947 cites W2089395654 @default.
- W1998977947 cites W2091864730 @default.
- W1998977947 cites W2094681979 @default.
- W1998977947 cites W2094997150 @default.
- W1998977947 cites W2097437100 @default.
- W1998977947 cites W2099700459 @default.
- W1998977947 cites W2109702159 @default.
- W1998977947 cites W2131415756 @default.
- W1998977947 cites W2135650835 @default.
- W1998977947 cites W2142134105 @default.
- W1998977947 cites W2332891022 @default.
- W1998977947 cites W3122675353 @default.
- W1998977947 cites W4234945989 @default.
- W1998977947 cites W4252640233 @default.
- W1998977947 cites W4256438904 @default.
- W1998977947 doi "https://doi.org/10.1021/jp000566+" @default.
- W1998977947 hasPublicationYear "2000" @default.
- W1998977947 type Work @default.
- W1998977947 sameAs 1998977947 @default.
- W1998977947 citedByCount "6" @default.
- W1998977947 crossrefType "journal-article" @default.
- W1998977947 hasAuthorship W1998977947A5021355135 @default.
- W1998977947 hasAuthorship W1998977947A5084846133 @default.
- W1998977947 hasAuthorship W1998977947A5088248960 @default.
- W1998977947 hasConcept C121332964 @default.
- W1998977947 hasConcept C134306372 @default.
- W1998977947 hasConcept C145912823 @default.