Matches in SemOpenAlex for { <https://semopenalex.org/work/W1998994624> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1998994624 endingPage "139" @default.
- W1998994624 startingPage "139" @default.
- W1998994624 abstract "Aim of the study: Predicting future harvested trees is a prerequisite to growth forecasts in managed forest stands. While harvest algorithms have been traditionally used, statistical harvest models could be an interesting alternative approach. The objective of this study was to fit statistical harvest models for different partial cutting treatments.Area of study: The study has been carried out in the province of Quebec, Canada.Material and Methods: Data from provincial control survey were used to fit harvest models for three different partial cutting treatments. A two-segment logistic modelling approach was used. The harvest models were designed to be compatible with the ARTEMIS growth simulator, which is currently in use in this province. Main results: The results showed that the probability of being harvested is different across the treatments and primarily depends on tree diameter at breast height and species. In selection cutting treatments in particular, trees close to the merchantable limit (e.g., 23 cm in this study) tended to be less frequently harvested than those with smaller or larger diameters, yielding a sinusoidal pattern that was well captured by the segmented approach. Research highlights: Although the models were of average accuracy as indicated by fit statistics, they made it possible to compare different scenarios in terms of productivity and rotation length when coupled with the ARTEMIS growth simulator. Moreover, compatibility requirements between the simulator and the harvest models appeared to be a major limitation in some cases.Keywords: Harvesting; statistical model; segmented approach; growth forecasts; managed stands." @default.
- W1998994624 created "2016-06-24" @default.
- W1998994624 creator A5059587211 @default.
- W1998994624 date "2014-04-01" @default.
- W1998994624 modified "2023-09-25" @default.
- W1998994624 title "Using a segmented logistic model to predict trees to be harvested in forest growth forecasts" @default.
- W1998994624 cites W1964173518 @default.
- W1998994624 cites W1972606868 @default.
- W1998994624 cites W1982886002 @default.
- W1998994624 cites W1999570772 @default.
- W1998994624 cites W2000603443 @default.
- W1998994624 cites W2029426756 @default.
- W1998994624 cites W2048098468 @default.
- W1998994624 cites W2063931521 @default.
- W1998994624 cites W2085837697 @default.
- W1998994624 cites W2109239173 @default.
- W1998994624 cites W2112195452 @default.
- W1998994624 cites W2122992868 @default.
- W1998994624 cites W2129893292 @default.
- W1998994624 cites W2168228342 @default.
- W1998994624 cites W2317401215 @default.
- W1998994624 cites W27483885 @default.
- W1998994624 cites W4206439534 @default.
- W1998994624 doi "https://doi.org/10.5424/fs/2014231-04824" @default.
- W1998994624 hasPublicationYear "2014" @default.
- W1998994624 type Work @default.
- W1998994624 sameAs 1998994624 @default.
- W1998994624 citedByCount "9" @default.
- W1998994624 countsByYear W19989946242014 @default.
- W1998994624 countsByYear W19989946242017 @default.
- W1998994624 countsByYear W19989946242018 @default.
- W1998994624 countsByYear W19989946242019 @default.
- W1998994624 countsByYear W19989946242021 @default.
- W1998994624 countsByYear W19989946242022 @default.
- W1998994624 countsByYear W19989946242023 @default.
- W1998994624 crossrefType "journal-article" @default.
- W1998994624 hasAuthorship W1998994624A5059587211 @default.
- W1998994624 hasBestOaLocation W19989946241 @default.
- W1998994624 hasConcept C105795698 @default.
- W1998994624 hasConcept C113174947 @default.
- W1998994624 hasConcept C134306372 @default.
- W1998994624 hasConcept C151956035 @default.
- W1998994624 hasConcept C205649164 @default.
- W1998994624 hasConcept C33923547 @default.
- W1998994624 hasConcept C39432304 @default.
- W1998994624 hasConcept C41008148 @default.
- W1998994624 hasConcept C58330081 @default.
- W1998994624 hasConcept C97137747 @default.
- W1998994624 hasConceptScore W1998994624C105795698 @default.
- W1998994624 hasConceptScore W1998994624C113174947 @default.
- W1998994624 hasConceptScore W1998994624C134306372 @default.
- W1998994624 hasConceptScore W1998994624C151956035 @default.
- W1998994624 hasConceptScore W1998994624C205649164 @default.
- W1998994624 hasConceptScore W1998994624C33923547 @default.
- W1998994624 hasConceptScore W1998994624C39432304 @default.
- W1998994624 hasConceptScore W1998994624C41008148 @default.
- W1998994624 hasConceptScore W1998994624C58330081 @default.
- W1998994624 hasConceptScore W1998994624C97137747 @default.
- W1998994624 hasIssue "1" @default.
- W1998994624 hasLocation W19989946241 @default.
- W1998994624 hasLocation W19989946242 @default.
- W1998994624 hasLocation W19989946243 @default.
- W1998994624 hasLocation W19989946244 @default.
- W1998994624 hasLocation W19989946245 @default.
- W1998994624 hasOpenAccess W1998994624 @default.
- W1998994624 hasPrimaryLocation W19989946241 @default.
- W1998994624 hasRelatedWork W1985231403 @default.
- W1998994624 hasRelatedWork W2037668591 @default.
- W1998994624 hasRelatedWork W2046857079 @default.
- W1998994624 hasRelatedWork W2119158312 @default.
- W1998994624 hasRelatedWork W2347937125 @default.
- W1998994624 hasRelatedWork W2389048099 @default.
- W1998994624 hasRelatedWork W2552050053 @default.
- W1998994624 hasRelatedWork W2582241034 @default.
- W1998994624 hasRelatedWork W2899084033 @default.
- W1998994624 hasRelatedWork W3126658412 @default.
- W1998994624 hasVolume "23" @default.
- W1998994624 isParatext "false" @default.
- W1998994624 isRetracted "false" @default.
- W1998994624 magId "1998994624" @default.
- W1998994624 workType "article" @default.