Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999077402> ?p ?o ?g. }
- W1999077402 endingPage "34" @default.
- W1999077402 startingPage "16" @default.
- W1999077402 abstract "Cluster structure ensemble focuses on integrating multiple cluster structures extracted from different datasets into a unified cluster structure, instead of aligning the individual labels from the clustering solutions derived from multiple homogenous datasets in the cluster ensemble framework. In this article, we design a novel probabilistic cluster structure ensemble framework, referred to as Gaussian mixture model based cluster structure ensemble framework (GMMSE), to identify the most representative cluster structure from the dataset. Specifically, GMMSE first applies the bagging approach to produce a set of variant datasets. Then, a set of Gaussian mixture models are used to capture the underlying cluster structures of the datasets. GMMSE applies K-means to initialize the values of the parameters of the Gaussian mixture model, and adopts the Expectation Maximization approach (EM) to estimate the parameter values of the model. Next, the components of the Gaussian mixture models are viewed as new data samples which are used to construct the representative matrix capturing the relationships among components. The similarity between two components corresponding to their respective Gaussian distributions is measured by the Bhattycharya distance function. Afterwards, GMMSE constructs a graph based on the new data samples and the representative matrix, and searches for the most representative cluster structure. Finally, we also design four criteria to assign the data samples to their corresponding clusters based on the unified cluster structure. The experimental results show that (i) GMMSE works well on synthetic datasets and real datasets in the UCI machine learning repository. (ii) GMMSE outperforms most of the previous cluster ensemble approaches." @default.
- W1999077402 created "2016-06-24" @default.
- W1999077402 creator A5006238145 @default.
- W1999077402 creator A5014196059 @default.
- W1999077402 creator A5027082940 @default.
- W1999077402 creator A5045562050 @default.
- W1999077402 creator A5049531727 @default.
- W1999077402 creator A5074481485 @default.
- W1999077402 creator A5082893297 @default.
- W1999077402 date "2014-05-01" @default.
- W1999077402 modified "2023-10-17" @default.
- W1999077402 title "Probabilistic cluster structure ensemble" @default.
- W1999077402 cites W100104462 @default.
- W1999077402 cites W1512173429 @default.
- W1999077402 cites W1548779692 @default.
- W1999077402 cites W1940737455 @default.
- W1999077402 cites W1977231393 @default.
- W1999077402 cites W1988790447 @default.
- W1999077402 cites W1997996331 @default.
- W1999077402 cites W2008864975 @default.
- W1999077402 cites W2023779506 @default.
- W1999077402 cites W2037183202 @default.
- W1999077402 cites W2039849619 @default.
- W1999077402 cites W2042484140 @default.
- W1999077402 cites W2044660163 @default.
- W1999077402 cites W2045132300 @default.
- W1999077402 cites W2071319114 @default.
- W1999077402 cites W2079875563 @default.
- W1999077402 cites W2086915492 @default.
- W1999077402 cites W2097413644 @default.
- W1999077402 cites W2098777834 @default.
- W1999077402 cites W2098946845 @default.
- W1999077402 cites W2099984621 @default.
- W1999077402 cites W2100022944 @default.
- W1999077402 cites W2100128988 @default.
- W1999077402 cites W2101228436 @default.
- W1999077402 cites W2103781895 @default.
- W1999077402 cites W2108343180 @default.
- W1999077402 cites W2111171370 @default.
- W1999077402 cites W2111284392 @default.
- W1999077402 cites W2111596024 @default.
- W1999077402 cites W2113242816 @default.
- W1999077402 cites W2115346774 @default.
- W1999077402 cites W2115629999 @default.
- W1999077402 cites W2116673996 @default.
- W1999077402 cites W2116984363 @default.
- W1999077402 cites W2121236959 @default.
- W1999077402 cites W2121947440 @default.
- W1999077402 cites W2122644269 @default.
- W1999077402 cites W2126775366 @default.
- W1999077402 cites W2127966029 @default.
- W1999077402 cites W2128030160 @default.
- W1999077402 cites W2139280638 @default.
- W1999077402 cites W2140413566 @default.
- W1999077402 cites W2144419338 @default.
- W1999077402 cites W2149739421 @default.
- W1999077402 cites W2150200997 @default.
- W1999077402 cites W2150757437 @default.
- W1999077402 cites W2153293405 @default.
- W1999077402 cites W2155916898 @default.
- W1999077402 cites W2157825465 @default.
- W1999077402 cites W2158854411 @default.
- W1999077402 cites W2160437295 @default.
- W1999077402 cites W2911964244 @default.
- W1999077402 cites W3083270358 @default.
- W1999077402 cites W4212883601 @default.
- W1999077402 cites W4313729883 @default.
- W1999077402 doi "https://doi.org/10.1016/j.ins.2014.01.030" @default.
- W1999077402 hasPublicationYear "2014" @default.
- W1999077402 type Work @default.
- W1999077402 sameAs 1999077402 @default.
- W1999077402 citedByCount "30" @default.
- W1999077402 countsByYear W19990774022015 @default.
- W1999077402 countsByYear W19990774022016 @default.
- W1999077402 countsByYear W19990774022017 @default.
- W1999077402 countsByYear W19990774022018 @default.
- W1999077402 countsByYear W19990774022019 @default.
- W1999077402 countsByYear W19990774022020 @default.
- W1999077402 countsByYear W19990774022021 @default.
- W1999077402 countsByYear W19990774022022 @default.
- W1999077402 crossrefType "journal-article" @default.
- W1999077402 hasAuthorship W1999077402A5006238145 @default.
- W1999077402 hasAuthorship W1999077402A5014196059 @default.
- W1999077402 hasAuthorship W1999077402A5027082940 @default.
- W1999077402 hasAuthorship W1999077402A5045562050 @default.
- W1999077402 hasAuthorship W1999077402A5049531727 @default.
- W1999077402 hasAuthorship W1999077402A5074481485 @default.
- W1999077402 hasAuthorship W1999077402A5082893297 @default.
- W1999077402 hasConcept C103278499 @default.
- W1999077402 hasConcept C105795698 @default.
- W1999077402 hasConcept C11413529 @default.
- W1999077402 hasConcept C115961682 @default.
- W1999077402 hasConcept C119898033 @default.
- W1999077402 hasConcept C121332964 @default.
- W1999077402 hasConcept C124101348 @default.
- W1999077402 hasConcept C153180895 @default.
- W1999077402 hasConcept C154945302 @default.
- W1999077402 hasConcept C163716315 @default.