Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999278843> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1999278843 endingPage "1414" @default.
- W1999278843 startingPage "1405" @default.
- W1999278843 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a closed manifold which admits a foliation structure <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper F> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>F</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of codimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q greater-than-or-equal-to 2> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>qgeq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a bundle-like metric <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g 0> <mml:semantics> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>g_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-bracket g 0 right-bracket Subscript upper B> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:msub> <mml:mo stretchy=false>]</mml:mo> <mml:mi>B</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>[g_0]_B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the space of bundle-like metrics which differ from <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g 0> <mml:semantics> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>g_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> only along the horizontal directions by a multiple of a positive basic function. Assume <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a transverse conformal vector field and the mean curvature of the leaves of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper M comma script upper F comma g 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>F</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(M,mathcal {F},g_0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vanishes. We show that the integral <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=integral Underscript upper M Endscripts upper Y left-parenthesis upper R Subscript g Sub Superscript upper T Subscript Superscript upper T Baseline right-parenthesis d mu Subscript g> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mi>Y</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>g</mml:mi> <mml:mi>T</mml:mi> </mml:msup> </mml:mrow> <mml:mi>T</mml:mi> </mml:msubsup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>int _MY(R^T_{g^T})dmu _g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is independent of the choice of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g element-of left-bracket g 0 right-bracket Subscript upper B> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:msub> <mml:mo stretchy=false>]</mml:mo> <mml:mi>B</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>gin [g_0]_B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g Superscript upper T> <mml:semantics> <mml:msup> <mml:mi>g</mml:mi> <mml:mi>T</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>g^T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the transverse metric induced by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=application/x-tex>g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R Superscript upper T> <mml:semantics> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>T</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>R^T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the transverse scalar curvature. Moreover if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q greater-than-or-equal-to 3> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>qgeq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we have <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=integral Underscript upper M Endscripts upper Y left-parenthesis upper R Subscript g Sub Superscript upper T Subscript Superscript upper T Baseline right-parenthesis d mu Subscript g Baseline equals 0> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mi>Y</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>g</mml:mi> <mml:mi>T</mml:mi> </mml:msup> </mml:mrow> <mml:mi>T</mml:mi> </mml:msubsup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>int _MY(R^T_{g^T})dmu _g=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g element-of left-bracket g 0 right-bracket Subscript upper B> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:msub> <mml:mo stretchy=false>]</mml:mo> <mml:mi>B</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>gin [g_0]_B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. However there exist codimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=application/x-tex>2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> minimal Riemannian foliations <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper M comma script upper F comma g right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>F</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(M,mathcal {F},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and transverse conformal vector fields <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=integral Underscript upper M Endscripts upper Y left-parenthesis upper R Subscript g Sub Superscript upper T Subscript Superscript upper T Baseline right-parenthesis d mu Subscript g Baseline not-equals 0> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mi>Y</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>g</mml:mi> <mml:mi>T</mml:mi> </mml:msup> </mml:mrow> <mml:mi>T</mml:mi> </mml:msubsup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>int _MY(R^T_{g^T})dmu _gneq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Therefore, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=integral Underscript upper M Endscripts upper Y left-parenthesis upper R Subscript g Sub Superscript upper T Subscript Superscript upper T Baseline right-parenthesis d mu Subscript g> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mi>Y</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>g</mml:mi> <mml:mi>T</mml:mi> </mml:msup> </mml:mrow> <mml:mi>T</mml:mi> </mml:msubsup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>int _MY(R^T_{g^T})dmu _g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a nontrivial obstruction for the transverse Yamabe problem on minimal Riemannian foliation of codimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=application/x-tex>2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1999278843 created "2016-06-24" @default.
- W1999278843 creator A5037424940 @default.
- W1999278843 creator A5054085447 @default.
- W1999278843 date "2012-09-07" @default.
- W1999278843 modified "2023-09-27" @default.
- W1999278843 title "A conformal integral invariant on Riemannian foliations" @default.
- W1999278843 cites W1591731904 @default.
- W1999278843 cites W1668839583 @default.
- W1999278843 cites W2014684901 @default.
- W1999278843 cites W2021499246 @default.
- W1999278843 cites W2048041714 @default.
- W1999278843 cites W2074952544 @default.
- W1999278843 cites W2075595991 @default.
- W1999278843 cites W2112032645 @default.
- W1999278843 cites W2144913525 @default.
- W1999278843 cites W2160907820 @default.
- W1999278843 cites W2617198497 @default.
- W1999278843 cites W2949898067 @default.
- W1999278843 cites W2963483888 @default.
- W1999278843 cites W4205531895 @default.
- W1999278843 cites W4229898202 @default.
- W1999278843 cites W4248136896 @default.
- W1999278843 doi "https://doi.org/10.1090/s0002-9939-2012-11498-4" @default.
- W1999278843 hasPublicationYear "2012" @default.
- W1999278843 type Work @default.
- W1999278843 sameAs 1999278843 @default.
- W1999278843 citedByCount "3" @default.
- W1999278843 countsByYear W19992788432015 @default.
- W1999278843 countsByYear W19992788432022 @default.
- W1999278843 crossrefType "journal-article" @default.
- W1999278843 hasAuthorship W1999278843A5037424940 @default.
- W1999278843 hasAuthorship W1999278843A5054085447 @default.
- W1999278843 hasBestOaLocation W19992788431 @default.
- W1999278843 hasConcept C11413529 @default.
- W1999278843 hasConcept C154945302 @default.
- W1999278843 hasConcept C2776321320 @default.
- W1999278843 hasConcept C41008148 @default.
- W1999278843 hasConceptScore W1999278843C11413529 @default.
- W1999278843 hasConceptScore W1999278843C154945302 @default.
- W1999278843 hasConceptScore W1999278843C2776321320 @default.
- W1999278843 hasConceptScore W1999278843C41008148 @default.
- W1999278843 hasIssue "4" @default.
- W1999278843 hasLocation W19992788431 @default.
- W1999278843 hasLocation W19992788432 @default.
- W1999278843 hasLocation W19992788433 @default.
- W1999278843 hasOpenAccess W1999278843 @default.
- W1999278843 hasPrimaryLocation W19992788431 @default.
- W1999278843 hasRelatedWork W151193258 @default.
- W1999278843 hasRelatedWork W1529400504 @default.
- W1999278843 hasRelatedWork W1607472309 @default.
- W1999278843 hasRelatedWork W1871911958 @default.
- W1999278843 hasRelatedWork W1892467659 @default.
- W1999278843 hasRelatedWork W2348710178 @default.
- W1999278843 hasRelatedWork W2808586768 @default.
- W1999278843 hasRelatedWork W2998403542 @default.
- W1999278843 hasRelatedWork W3107474891 @default.
- W1999278843 hasRelatedWork W38394648 @default.
- W1999278843 hasVolume "141" @default.
- W1999278843 isParatext "false" @default.
- W1999278843 isRetracted "false" @default.
- W1999278843 magId "1999278843" @default.
- W1999278843 workType "article" @default.