Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999343787> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W1999343787 endingPage "144504" @default.
- W1999343787 startingPage "144504" @default.
- W1999343787 abstract "A complete thermodynamically consistent elementary reaction kinetic model of particle nucleation and growth from supersaturated vapor was developed and numerically evaluated to determine the conditions for the steady-state regime. The model treats all processes recognized in the aerosol science (such as nucleation, condensation, evaporation, agglomeration∕coagulation, etc.) as reversible elementary reactions. It includes all possible forward reactions (i.e., of monomers, dimers, trimers, etc.) together with the thermodynamically consistent reverse processes. The model is built based on the Kelvin approximation, and has two dimensionless parameters: S0—the initial supersaturation and Θ—the dimensionless surface tension. The time evolution of the size distribution function was obtained over the ranges of parameters S0 and Θ. At low initial supersaturations, S0, the steady state is established after a delay, and the steady-state distribution function corresponds to the predictions of the classical nucleation theory. At high initial supersaturations, the depletion of monomers due to condensation on large clusters starts before the establishing of the steady state. The steady state is never reached, and the classical nucleation theory is not applicable. The boundary that separates these two regimes in the two dimensionless parameter space, S0 and Θ, was determined. The model was applied to several experiments on water nucleation in an expansion chamber [J. Wolk and R. Strey, J. Phys. Chem. B 105, 11683 (2001)] and in Laval nozzle [Y. J. Kim et al., J. Phys. Chem. A 108, 4365 (2004)]. The conditions of the experiments performed using Laval nozzle (S0=40–120) were found to be close to the boundary of the non-steady-state regime. Additional calculations have shown that in the non-steady-state regime the nucleation rate is sensitive to the rate constants of the initial steps of the nucleation process, such as the monomer-monomer, monomer-dimer, etc., reactions. This conclusion is particularly important for nucleation from supersaturated water vapor, since these processes for water molecules at and below the atmospheric pressure are in the low pressure limit, and the rate constants can be several orders of magnitude lower than the gas kinetic. In addition, the impact of the thermodynamic inconsistency of the previously developed partially reversible kinetic numerical models was assessed. At typical experimental conditions for water nucleation, S0=10 and Θ=10 (T=250K), the error in the particle nucleation rate introduced by the thermodynamic inconsistency exceeds one order of magnitude." @default.
- W1999343787 created "2016-06-24" @default.
- W1999343787 creator A5016254707 @default.
- W1999343787 creator A5073087777 @default.
- W1999343787 date "2007-04-14" @default.
- W1999343787 modified "2023-10-16" @default.
- W1999343787 title "Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation" @default.
- W1999343787 cites W1512021984 @default.
- W1999343787 cites W1965435342 @default.
- W1999343787 cites W1965965771 @default.
- W1999343787 cites W1977766232 @default.
- W1999343787 cites W1978136337 @default.
- W1999343787 cites W1979189012 @default.
- W1999343787 cites W1987494364 @default.
- W1999343787 cites W1989503223 @default.
- W1999343787 cites W1990682288 @default.
- W1999343787 cites W1996610180 @default.
- W1999343787 cites W1997502779 @default.
- W1999343787 cites W1999956240 @default.
- W1999343787 cites W2000816630 @default.
- W1999343787 cites W2000871529 @default.
- W1999343787 cites W2012381279 @default.
- W1999343787 cites W2013736497 @default.
- W1999343787 cites W2013813944 @default.
- W1999343787 cites W2015643397 @default.
- W1999343787 cites W2022308914 @default.
- W1999343787 cites W2029151371 @default.
- W1999343787 cites W2038148218 @default.
- W1999343787 cites W2045023088 @default.
- W1999343787 cites W2047137396 @default.
- W1999343787 cites W2048403800 @default.
- W1999343787 cites W2051049241 @default.
- W1999343787 cites W2053760139 @default.
- W1999343787 cites W2068545199 @default.
- W1999343787 cites W2070186779 @default.
- W1999343787 cites W2078656211 @default.
- W1999343787 cites W2083212674 @default.
- W1999343787 cites W2085192102 @default.
- W1999343787 cites W2085301381 @default.
- W1999343787 cites W2085749794 @default.
- W1999343787 cites W2091270670 @default.
- W1999343787 cites W2091542099 @default.
- W1999343787 cites W2093870266 @default.
- W1999343787 cites W2095034077 @default.
- W1999343787 cites W2122823697 @default.
- W1999343787 cites W2142202035 @default.
- W1999343787 cites W2162317187 @default.
- W1999343787 cites W4249092878 @default.
- W1999343787 doi "https://doi.org/10.1063/1.2672647" @default.
- W1999343787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17444720" @default.
- W1999343787 hasPublicationYear "2007" @default.
- W1999343787 type Work @default.
- W1999343787 sameAs 1999343787 @default.
- W1999343787 citedByCount "10" @default.
- W1999343787 countsByYear W19993437872012 @default.
- W1999343787 countsByYear W19993437872015 @default.
- W1999343787 countsByYear W19993437872016 @default.
- W1999343787 crossrefType "journal-article" @default.
- W1999343787 hasAuthorship W1999343787A5016254707 @default.
- W1999343787 hasAuthorship W1999343787A5073087777 @default.
- W1999343787 hasConcept C121332964 @default.
- W1999343787 hasConcept C147789679 @default.
- W1999343787 hasConcept C185592680 @default.
- W1999343787 hasConcept C200093464 @default.
- W1999343787 hasConcept C200447597 @default.
- W1999343787 hasConcept C24872484 @default.
- W1999343787 hasConcept C61048295 @default.
- W1999343787 hasConcept C8171440 @default.
- W1999343787 hasConcept C97355855 @default.
- W1999343787 hasConceptScore W1999343787C121332964 @default.
- W1999343787 hasConceptScore W1999343787C147789679 @default.
- W1999343787 hasConceptScore W1999343787C185592680 @default.
- W1999343787 hasConceptScore W1999343787C200093464 @default.
- W1999343787 hasConceptScore W1999343787C200447597 @default.
- W1999343787 hasConceptScore W1999343787C24872484 @default.
- W1999343787 hasConceptScore W1999343787C61048295 @default.
- W1999343787 hasConceptScore W1999343787C8171440 @default.
- W1999343787 hasConceptScore W1999343787C97355855 @default.
- W1999343787 hasIssue "14" @default.
- W1999343787 hasLocation W19993437871 @default.
- W1999343787 hasLocation W19993437872 @default.
- W1999343787 hasOpenAccess W1999343787 @default.
- W1999343787 hasPrimaryLocation W19993437871 @default.
- W1999343787 hasRelatedWork W1526395427 @default.
- W1999343787 hasRelatedWork W1977796158 @default.
- W1999343787 hasRelatedWork W1979351042 @default.
- W1999343787 hasRelatedWork W1989568368 @default.
- W1999343787 hasRelatedWork W1993495201 @default.
- W1999343787 hasRelatedWork W2035964232 @default.
- W1999343787 hasRelatedWork W2045680001 @default.
- W1999343787 hasRelatedWork W2073956814 @default.
- W1999343787 hasRelatedWork W27868129 @default.
- W1999343787 hasRelatedWork W4244912582 @default.
- W1999343787 hasVolume "126" @default.
- W1999343787 isParatext "false" @default.
- W1999343787 isRetracted "false" @default.
- W1999343787 magId "1999343787" @default.
- W1999343787 workType "article" @default.