Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999351024> ?p ?o ?g. }
- W1999351024 endingPage "1514" @default.
- W1999351024 startingPage "1500" @default.
- W1999351024 abstract "As an alternative to variable selection or shrinkage in high-dimensional regression, we propose to randomly compress the predictors prior to analysis. This dramatically reduces storage and computational bottlenecks, performing well when the predictors can be projected to a low-dimensional linear subspace with minimal loss of information about the response. As opposed to existing Bayesian dimensionality reduction approaches, the exact posterior distribution conditional on the compressed data is available analytically, speeding up computation by many orders of magnitude while also bypassing robustness issues due to convergence and mixing problems with MCMC. Model averaging is used to reduce sensitivity to the random projection matrix, while accommodating uncertainty in the subspace dimension. Strong theoretical support is provided for the approach by showing near parametric convergence rates for the predictive density in the large p small n asymptotic paradigm. Practical performance relative to competitors is illustrated in simulations and real data applications." @default.
- W1999351024 created "2016-06-24" @default.
- W1999351024 creator A5001163175 @default.
- W1999351024 creator A5002768909 @default.
- W1999351024 date "2015-10-02" @default.
- W1999351024 modified "2023-09-26" @default.
- W1999351024 title "Bayesian Compressed Regression" @default.
- W1999351024 cites W1480392687 @default.
- W1999351024 cites W1506231599 @default.
- W1999351024 cites W1543267671 @default.
- W1999351024 cites W1982652137 @default.
- W1999351024 cites W2005931557 @default.
- W1999351024 cites W2027235406 @default.
- W1999351024 cites W2037757210 @default.
- W1999351024 cites W2041779820 @default.
- W1999351024 cites W2044410728 @default.
- W1999351024 cites W2057331441 @default.
- W1999351024 cites W2062532221 @default.
- W1999351024 cites W2075779886 @default.
- W1999351024 cites W2088658556 @default.
- W1999351024 cites W2090898720 @default.
- W1999351024 cites W2106188547 @default.
- W1999351024 cites W2114169935 @default.
- W1999351024 cites W2115167172 @default.
- W1999351024 cites W2118123209 @default.
- W1999351024 cites W2120961178 @default.
- W1999351024 cites W2122825543 @default.
- W1999351024 cites W2126131432 @default.
- W1999351024 cites W2129131372 @default.
- W1999351024 cites W2147717648 @default.
- W1999351024 cites W2148319469 @default.
- W1999351024 cites W2164452299 @default.
- W1999351024 cites W2168973828 @default.
- W1999351024 cites W3100858558 @default.
- W1999351024 cites W3104051756 @default.
- W1999351024 cites W3105340263 @default.
- W1999351024 cites W4213170682 @default.
- W1999351024 cites W4243574300 @default.
- W1999351024 cites W4250955649 @default.
- W1999351024 doi "https://doi.org/10.1080/01621459.2014.969425" @default.
- W1999351024 hasPublicationYear "2015" @default.
- W1999351024 type Work @default.
- W1999351024 sameAs 1999351024 @default.
- W1999351024 citedByCount "51" @default.
- W1999351024 countsByYear W19993510242013 @default.
- W1999351024 countsByYear W19993510242015 @default.
- W1999351024 countsByYear W19993510242016 @default.
- W1999351024 countsByYear W19993510242017 @default.
- W1999351024 countsByYear W19993510242018 @default.
- W1999351024 countsByYear W19993510242019 @default.
- W1999351024 countsByYear W19993510242020 @default.
- W1999351024 countsByYear W19993510242021 @default.
- W1999351024 countsByYear W19993510242022 @default.
- W1999351024 countsByYear W19993510242023 @default.
- W1999351024 crossrefType "journal-article" @default.
- W1999351024 hasAuthorship W1999351024A5001163175 @default.
- W1999351024 hasAuthorship W1999351024A5002768909 @default.
- W1999351024 hasBestOaLocation W19993510242 @default.
- W1999351024 hasConcept C104317684 @default.
- W1999351024 hasConcept C105795698 @default.
- W1999351024 hasConcept C107673813 @default.
- W1999351024 hasConcept C11413529 @default.
- W1999351024 hasConcept C117251300 @default.
- W1999351024 hasConcept C126255220 @default.
- W1999351024 hasConcept C154945302 @default.
- W1999351024 hasConcept C185592680 @default.
- W1999351024 hasConcept C2777036070 @default.
- W1999351024 hasConcept C27931671 @default.
- W1999351024 hasConcept C32834561 @default.
- W1999351024 hasConcept C33923547 @default.
- W1999351024 hasConcept C41008148 @default.
- W1999351024 hasConcept C55493867 @default.
- W1999351024 hasConcept C63479239 @default.
- W1999351024 hasConcept C70518039 @default.
- W1999351024 hasConceptScore W1999351024C104317684 @default.
- W1999351024 hasConceptScore W1999351024C105795698 @default.
- W1999351024 hasConceptScore W1999351024C107673813 @default.
- W1999351024 hasConceptScore W1999351024C11413529 @default.
- W1999351024 hasConceptScore W1999351024C117251300 @default.
- W1999351024 hasConceptScore W1999351024C126255220 @default.
- W1999351024 hasConceptScore W1999351024C154945302 @default.
- W1999351024 hasConceptScore W1999351024C185592680 @default.
- W1999351024 hasConceptScore W1999351024C2777036070 @default.
- W1999351024 hasConceptScore W1999351024C27931671 @default.
- W1999351024 hasConceptScore W1999351024C32834561 @default.
- W1999351024 hasConceptScore W1999351024C33923547 @default.
- W1999351024 hasConceptScore W1999351024C41008148 @default.
- W1999351024 hasConceptScore W1999351024C55493867 @default.
- W1999351024 hasConceptScore W1999351024C63479239 @default.
- W1999351024 hasConceptScore W1999351024C70518039 @default.
- W1999351024 hasIssue "512" @default.
- W1999351024 hasLocation W19993510241 @default.
- W1999351024 hasLocation W19993510242 @default.
- W1999351024 hasLocation W19993510243 @default.
- W1999351024 hasOpenAccess W1999351024 @default.
- W1999351024 hasPrimaryLocation W19993510241 @default.
- W1999351024 hasRelatedWork W2003017581 @default.
- W1999351024 hasRelatedWork W2089497633 @default.