Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999453191> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1999453191 endingPage "185" @default.
- W1999453191 startingPage "172" @default.
- W1999453191 abstract "For several decades now, there has been sporadic interest in automatically characterizing the speech impairment due to Parkinson's disease (PD). Most early studies were confined to quantifying a few speech features that were easy to compute. More recent studies have adopted a machine learning approach where a large number of potential features are extracted and the models are learned automatically from the data. In the same vein, here we characterize the disease using a relatively large cohort of 168 subjects, collected from multiple (three) clinics. We elicited speech using three tasks - the sustained phonation task, the diadochokinetic task and a reading task, all within a time budget of 4 minutes, prompted by a portable device. From these recordings, we extracted 1582 features for each subject using openSMILE, a standard feature extraction tool. We compared the effectiveness of three strategies for learning a regularized regression and find that ridge regression performs better than lasso and support vector regression for our task. We refine the feature extraction to capture pitch-related cues, including jitter and shimmer, more accurately using a time-varying harmonic model of speech. Our results show that the severity of the disease can be inferred from speech with a mean absolute error of about 5.5, explaining 61% of the variance and consistently well-above chance across all clinics. Of the three speech elicitation tasks, we find that the reading task is significantly better at capturing cues than diadochokinetic or sustained phonation task. In all, we have demonstrated that the data collection and inference can be fully automated, and the results show that speech-based assessment has promising practical application in PD. The techniques reported here are more widely applicable to other paralinguistic tasks in clinical domain." @default.
- W1999453191 created "2016-06-24" @default.
- W1999453191 creator A5025419994 @default.
- W1999453191 creator A5038300369 @default.
- W1999453191 creator A5049359099 @default.
- W1999453191 creator A5057153459 @default.
- W1999453191 date "2015-01-01" @default.
- W1999453191 modified "2023-09-29" @default.
- W1999453191 title "Fully automated assessment of the severity of Parkinson's disease from speech" @default.
- W1999453191 cites W1480376833 @default.
- W1999453191 cites W1986400202 @default.
- W1999453191 cites W1987349122 @default.
- W1999453191 cites W2004185665 @default.
- W1999453191 cites W2007412981 @default.
- W1999453191 cites W2060718800 @default.
- W1999453191 cites W2068840206 @default.
- W1999453191 cites W2091425152 @default.
- W1999453191 cites W2100989275 @default.
- W1999453191 cites W2167277498 @default.
- W1999453191 cites W4249888301 @default.
- W1999453191 doi "https://doi.org/10.1016/j.csl.2013.12.001" @default.
- W1999453191 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4222054" @default.
- W1999453191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25382935" @default.
- W1999453191 hasPublicationYear "2015" @default.
- W1999453191 type Work @default.
- W1999453191 sameAs 1999453191 @default.
- W1999453191 citedByCount "82" @default.
- W1999453191 countsByYear W19994531912014 @default.
- W1999453191 countsByYear W19994531912015 @default.
- W1999453191 countsByYear W19994531912016 @default.
- W1999453191 countsByYear W19994531912017 @default.
- W1999453191 countsByYear W19994531912018 @default.
- W1999453191 countsByYear W19994531912019 @default.
- W1999453191 countsByYear W19994531912020 @default.
- W1999453191 countsByYear W19994531912021 @default.
- W1999453191 countsByYear W19994531912022 @default.
- W1999453191 countsByYear W19994531912023 @default.
- W1999453191 crossrefType "journal-article" @default.
- W1999453191 hasAuthorship W1999453191A5025419994 @default.
- W1999453191 hasAuthorship W1999453191A5038300369 @default.
- W1999453191 hasAuthorship W1999453191A5049359099 @default.
- W1999453191 hasAuthorship W1999453191A5057153459 @default.
- W1999453191 hasBestOaLocation W19994531912 @default.
- W1999453191 hasConcept C105795698 @default.
- W1999453191 hasConcept C154945302 @default.
- W1999453191 hasConcept C162324750 @default.
- W1999453191 hasConcept C173988693 @default.
- W1999453191 hasConcept C187736073 @default.
- W1999453191 hasConcept C2776214188 @default.
- W1999453191 hasConcept C2780451532 @default.
- W1999453191 hasConcept C28490314 @default.
- W1999453191 hasConcept C33923547 @default.
- W1999453191 hasConcept C41008148 @default.
- W1999453191 hasConcept C548259974 @default.
- W1999453191 hasConcept C71924100 @default.
- W1999453191 hasConcept C83546350 @default.
- W1999453191 hasConceptScore W1999453191C105795698 @default.
- W1999453191 hasConceptScore W1999453191C154945302 @default.
- W1999453191 hasConceptScore W1999453191C162324750 @default.
- W1999453191 hasConceptScore W1999453191C173988693 @default.
- W1999453191 hasConceptScore W1999453191C187736073 @default.
- W1999453191 hasConceptScore W1999453191C2776214188 @default.
- W1999453191 hasConceptScore W1999453191C2780451532 @default.
- W1999453191 hasConceptScore W1999453191C28490314 @default.
- W1999453191 hasConceptScore W1999453191C33923547 @default.
- W1999453191 hasConceptScore W1999453191C41008148 @default.
- W1999453191 hasConceptScore W1999453191C548259974 @default.
- W1999453191 hasConceptScore W1999453191C71924100 @default.
- W1999453191 hasConceptScore W1999453191C83546350 @default.
- W1999453191 hasFunder F4320314142 @default.
- W1999453191 hasIssue "1" @default.
- W1999453191 hasLocation W19994531911 @default.
- W1999453191 hasLocation W19994531912 @default.
- W1999453191 hasLocation W19994531913 @default.
- W1999453191 hasLocation W19994531914 @default.
- W1999453191 hasOpenAccess W1999453191 @default.
- W1999453191 hasPrimaryLocation W19994531911 @default.
- W1999453191 hasRelatedWork W144053593 @default.
- W1999453191 hasRelatedWork W1607472309 @default.
- W1999453191 hasRelatedWork W2081647779 @default.
- W1999453191 hasRelatedWork W2112160325 @default.
- W1999453191 hasRelatedWork W2370597599 @default.
- W1999453191 hasRelatedWork W2891342280 @default.
- W1999453191 hasRelatedWork W2893763841 @default.
- W1999453191 hasRelatedWork W2918095851 @default.
- W1999453191 hasRelatedWork W3128051602 @default.
- W1999453191 hasRelatedWork W3217387898 @default.
- W1999453191 hasVolume "29" @default.
- W1999453191 isParatext "false" @default.
- W1999453191 isRetracted "false" @default.
- W1999453191 magId "1999453191" @default.
- W1999453191 workType "article" @default.