Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999544089> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1999544089 endingPage "854" @default.
- W1999544089 startingPage "848" @default.
- W1999544089 abstract "Systematic self-monitoring of glycaemia represents acornerstone in intensified insulin therapy. In fact,self-monitoring of blood glucose (SMBG) marksprobably the most important advance in diabetescare since the discovery of insulin. However, at leasttwo aspects make conventional SMBG difficult. Fin-ger pricking to obtain the droplet of blood is regardedby many patients as even more daunting and painfulthan insulin injections [1]. On the other hand, spotmeasurements of blood glucose, even if performedseveral times daily, only provide an incomplete pic-ture of the blood glucose changes occurring over thewhole day. A continuous and reliable in-vivo glucosemonitoring system would allow diabetic patients tocheck their metabolic control at their convenience.This would supply the diabetic patient with all infor-mation required to optimise insulin therapy and,possibly, to improve metabolic control. Further-more acute metabolic deteriorations, such as hypo-glycaemic episodes, should easily become detectableby a continuously working glucose sensor.Several minimally invasive and non-invasive ap-proaches have been studied to monitor blood glucosemore or less continuously: 1) Implantable subcutane-ous (s.c.) glucose sensors, 2) S.c. interstitial fluidsampling by microdialysis or open-tissue microperfu-sion, 3) Transdermal glucose monitoring systems, 4)Optical glucose sensors. The minimally invasive ap-proaches (1 and 2) are based on the analysis of inter-stitial fluid. Insertion of electrodes into the s.c. tissuehas not yet resulted in a glucose sensor that could beused reliably for longer periods of time in humans[2–5]. Lack of biocompatibility of the electrode sur-face results in drifts of the electrode signal, associatedwith a loss of glucose sensitivity. The minimally inva-sive microdialysis technique and related techniquesreduce such problems by pumping a perfusatethrough a dialysis fibre inserted in the subcutaneoustissue [6–10]. Glucose diffuses from the interstitialfluid into the perfusate and is measured ex vivo. Inother approaches devices are attached to the skin tocollect glucose containing fluid transdermally [11].We will not review these minimally invasive ap-proaches for glycaemic monitoring but will focus onnon-invasive optical glucose sensors that avoid anumber of the problems of former approaches. Wewill discuss the problems of reliable glucose monitor-ing using the spectrometric absorption technologyand present a novel approach making use of the factthat the variation of blood glucose levels changes thelight scattering properties of skin tissue.In-vivo glucose monitoringby light absorption measurementSome research groups are trying to develop non-inva-sive glucose monitoring systems based on absorptionmeasurements [12–16]. Up to now, however, nonehas been converted into a reliable glucose monitoringsystem, although a number of companies have pre-sented or announced glucose monitoring devices us-ing similar approaches.Spectrophotometry is an established method forthe quantification of solutes in liquids. It is based onsolute specific absorption bands in the visible (VIS),near infra-red (NIR) or mid infra-red (MIR) spectralrange. Quantification of the solutes is possible by de-termination of light attenuation caused by absorptionat a single wavelength when taking the light pathlength (i.e. the cuvette thickness) into account. Thesolution has to be clear, as light scattering would re-sult in an additional attenuation of light." @default.
- W1999544089 created "2016-06-24" @default.
- W1999544089 creator A5005831545 @default.
- W1999544089 creator A5069410126 @default.
- W1999544089 date "1998-06-25" @default.
- W1999544089 modified "2023-10-10" @default.
- W1999544089 title "Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors" @default.
- W1999544089 cites W1964096955 @default.
- W1999544089 cites W1965636718 @default.
- W1999544089 cites W1971106099 @default.
- W1999544089 cites W1978939860 @default.
- W1999544089 cites W1998548833 @default.
- W1999544089 cites W2002225039 @default.
- W1999544089 cites W2013335620 @default.
- W1999544089 cites W2023066214 @default.
- W1999544089 cites W2048732705 @default.
- W1999544089 cites W2052051401 @default.
- W1999544089 cites W2063972936 @default.
- W1999544089 cites W2080167443 @default.
- W1999544089 cites W2083364983 @default.
- W1999544089 cites W2083963596 @default.
- W1999544089 cites W2092291700 @default.
- W1999544089 cites W2097943039 @default.
- W1999544089 cites W2116652687 @default.
- W1999544089 cites W2149482687 @default.
- W1999544089 cites W2152043495 @default.
- W1999544089 cites W2410905290 @default.
- W1999544089 cites W2587795508 @default.
- W1999544089 doi "https://doi.org/10.1007/s001250050998" @default.
- W1999544089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9686929" @default.
- W1999544089 hasPublicationYear "1998" @default.
- W1999544089 type Work @default.
- W1999544089 sameAs 1999544089 @default.
- W1999544089 citedByCount "79" @default.
- W1999544089 countsByYear W19995440892012 @default.
- W1999544089 countsByYear W19995440892013 @default.
- W1999544089 countsByYear W19995440892014 @default.
- W1999544089 countsByYear W19995440892015 @default.
- W1999544089 countsByYear W19995440892016 @default.
- W1999544089 countsByYear W19995440892017 @default.
- W1999544089 countsByYear W19995440892018 @default.
- W1999544089 countsByYear W19995440892019 @default.
- W1999544089 countsByYear W19995440892020 @default.
- W1999544089 countsByYear W19995440892022 @default.
- W1999544089 crossrefType "journal-article" @default.
- W1999544089 hasAuthorship W1999544089A5005831545 @default.
- W1999544089 hasAuthorship W1999544089A5069410126 @default.
- W1999544089 hasBestOaLocation W19995440891 @default.
- W1999544089 hasConcept C126322002 @default.
- W1999544089 hasConcept C134018914 @default.
- W1999544089 hasConcept C2781232474 @default.
- W1999544089 hasConcept C2986265897 @default.
- W1999544089 hasConcept C2986379492 @default.
- W1999544089 hasConcept C555293320 @default.
- W1999544089 hasConcept C71924100 @default.
- W1999544089 hasConceptScore W1999544089C126322002 @default.
- W1999544089 hasConceptScore W1999544089C134018914 @default.
- W1999544089 hasConceptScore W1999544089C2781232474 @default.
- W1999544089 hasConceptScore W1999544089C2986265897 @default.
- W1999544089 hasConceptScore W1999544089C2986379492 @default.
- W1999544089 hasConceptScore W1999544089C555293320 @default.
- W1999544089 hasConceptScore W1999544089C71924100 @default.
- W1999544089 hasIssue "7" @default.
- W1999544089 hasLocation W19995440891 @default.
- W1999544089 hasLocation W19995440892 @default.
- W1999544089 hasOpenAccess W1999544089 @default.
- W1999544089 hasPrimaryLocation W19995440891 @default.
- W1999544089 hasRelatedWork W1990880684 @default.
- W1999544089 hasRelatedWork W1993230332 @default.
- W1999544089 hasRelatedWork W2114353427 @default.
- W1999544089 hasRelatedWork W2513029483 @default.
- W1999544089 hasRelatedWork W26103963 @default.
- W1999544089 hasRelatedWork W2745714984 @default.
- W1999544089 hasRelatedWork W2995818918 @default.
- W1999544089 hasRelatedWork W3197321040 @default.
- W1999544089 hasRelatedWork W4380150922 @default.
- W1999544089 hasRelatedWork W2740159850 @default.
- W1999544089 hasVolume "41" @default.
- W1999544089 isParatext "false" @default.
- W1999544089 isRetracted "false" @default.
- W1999544089 magId "1999544089" @default.
- W1999544089 workType "article" @default.