Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999577172> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1999577172 abstract "This paper proposes a learning algorithm for single-hidden layer feedforward neural networks (SLFN) called genetically optimized extreme learning machine (GO-ELM). In the GO-ELM, the structure and the parameters of the SLFN are optimized by a genetic algorithm (GA). The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov's regularization in order to improve the SLFN performance in the presence of noisy data. The GA is used to tune the set of input variables, the hidden-layer configuration and bias, the input weights and the Tikhonov's regularization factor. The proposed method was applied and compared with four other methods over five benchmark problems available in a public repository. Besides it was applied in the estimation of the temperature at the burning zone of a real cement kiln plant." @default.
- W1999577172 created "2016-06-24" @default.
- W1999577172 creator A5023127369 @default.
- W1999577172 creator A5036445711 @default.
- W1999577172 creator A5067512057 @default.
- W1999577172 creator A5091086613 @default.
- W1999577172 date "2013-09-01" @default.
- W1999577172 modified "2023-09-27" @default.
- W1999577172 title "Genetically optimized extreme learning machine" @default.
- W1999577172 cites W1634775478 @default.
- W1999577172 cites W1984530193 @default.
- W1999577172 cites W2024656444 @default.
- W1999577172 cites W2039708501 @default.
- W1999577172 cites W2052065348 @default.
- W1999577172 cites W2059054592 @default.
- W1999577172 cites W2067878879 @default.
- W1999577172 cites W2100704551 @default.
- W1999577172 cites W2108604074 @default.
- W1999577172 cites W2111072639 @default.
- W1999577172 cites W2114053544 @default.
- W1999577172 cites W2119739937 @default.
- W1999577172 cites W2124290836 @default.
- W1999577172 cites W2130378394 @default.
- W1999577172 cites W2137983211 @default.
- W1999577172 cites W2141695047 @default.
- W1999577172 cites W2143482492 @default.
- W1999577172 cites W2160417764 @default.
- W1999577172 cites W2541132088 @default.
- W1999577172 doi "https://doi.org/10.1109/etfa.2013.6647975" @default.
- W1999577172 hasPublicationYear "2013" @default.
- W1999577172 type Work @default.
- W1999577172 sameAs 1999577172 @default.
- W1999577172 citedByCount "7" @default.
- W1999577172 countsByYear W19995771722016 @default.
- W1999577172 countsByYear W19995771722017 @default.
- W1999577172 countsByYear W19995771722018 @default.
- W1999577172 countsByYear W19995771722021 @default.
- W1999577172 countsByYear W19995771722023 @default.
- W1999577172 crossrefType "proceedings-article" @default.
- W1999577172 hasAuthorship W1999577172A5023127369 @default.
- W1999577172 hasAuthorship W1999577172A5036445711 @default.
- W1999577172 hasAuthorship W1999577172A5067512057 @default.
- W1999577172 hasAuthorship W1999577172A5091086613 @default.
- W1999577172 hasConcept C11413529 @default.
- W1999577172 hasConcept C119857082 @default.
- W1999577172 hasConcept C127413603 @default.
- W1999577172 hasConcept C13280743 @default.
- W1999577172 hasConcept C133731056 @default.
- W1999577172 hasConcept C134306372 @default.
- W1999577172 hasConcept C135252773 @default.
- W1999577172 hasConcept C152442038 @default.
- W1999577172 hasConcept C153180895 @default.
- W1999577172 hasConcept C154945302 @default.
- W1999577172 hasConcept C185798385 @default.
- W1999577172 hasConcept C205649164 @default.
- W1999577172 hasConcept C2776135515 @default.
- W1999577172 hasConcept C2780150128 @default.
- W1999577172 hasConcept C33923547 @default.
- W1999577172 hasConcept C38858127 @default.
- W1999577172 hasConcept C41008148 @default.
- W1999577172 hasConcept C47702885 @default.
- W1999577172 hasConcept C50644808 @default.
- W1999577172 hasConceptScore W1999577172C11413529 @default.
- W1999577172 hasConceptScore W1999577172C119857082 @default.
- W1999577172 hasConceptScore W1999577172C127413603 @default.
- W1999577172 hasConceptScore W1999577172C13280743 @default.
- W1999577172 hasConceptScore W1999577172C133731056 @default.
- W1999577172 hasConceptScore W1999577172C134306372 @default.
- W1999577172 hasConceptScore W1999577172C135252773 @default.
- W1999577172 hasConceptScore W1999577172C152442038 @default.
- W1999577172 hasConceptScore W1999577172C153180895 @default.
- W1999577172 hasConceptScore W1999577172C154945302 @default.
- W1999577172 hasConceptScore W1999577172C185798385 @default.
- W1999577172 hasConceptScore W1999577172C205649164 @default.
- W1999577172 hasConceptScore W1999577172C2776135515 @default.
- W1999577172 hasConceptScore W1999577172C2780150128 @default.
- W1999577172 hasConceptScore W1999577172C33923547 @default.
- W1999577172 hasConceptScore W1999577172C38858127 @default.
- W1999577172 hasConceptScore W1999577172C41008148 @default.
- W1999577172 hasConceptScore W1999577172C47702885 @default.
- W1999577172 hasConceptScore W1999577172C50644808 @default.
- W1999577172 hasLocation W19995771721 @default.
- W1999577172 hasOpenAccess W1999577172 @default.
- W1999577172 hasPrimaryLocation W19995771721 @default.
- W1999577172 hasRelatedWork W1545807863 @default.
- W1999577172 hasRelatedWork W1628717471 @default.
- W1999577172 hasRelatedWork W1987504169 @default.
- W1999577172 hasRelatedWork W2009238619 @default.
- W1999577172 hasRelatedWork W2055429730 @default.
- W1999577172 hasRelatedWork W2092173314 @default.
- W1999577172 hasRelatedWork W2338394561 @default.
- W1999577172 hasRelatedWork W2904803257 @default.
- W1999577172 hasRelatedWork W3170244987 @default.
- W1999577172 hasRelatedWork W4243042924 @default.
- W1999577172 isParatext "false" @default.
- W1999577172 isRetracted "false" @default.
- W1999577172 magId "1999577172" @default.
- W1999577172 workType "article" @default.