Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999789781> ?p ?o ?g. }
- W1999789781 endingPage "329" @default.
- W1999789781 startingPage "321" @default.
- W1999789781 abstract "Multi-parametric Magnetic Resonance Imaging, and specifically Dynamic Contrast Enhanced (DCE) MRI, play increasingly important roles in detection and staging of prostate cancer (PCa). One of the actively investigated approaches to DCE MRI analysis involves pharmacokinetic (PK) modeling to extract quantitative parameters that may be related to microvascular properties of the tissue. It is well-known that the prescribed arterial blood plasma concentration (or Arterial Input Function, AIF) input can have significant effects on the parameters estimated by PK modeling. The purpose of our study was to investigate such effects in DCE MRI data acquired in a typical clinical PCa setting. First, we investigated how the choice of a semi-automated or fully automated image-based individualized AIF (iAIF) estimation method affects the PK parameter values; and second, we examined the use of method-specific averaged AIF (cohort-based, or cAIF) as a means to attenuate the differences between the two AIF estimation methods. Two methods for automated image-based estimation of individualized (patient-specific) AIFs, one of which was previously validated for brain and the other for breast MRI, were compared. cAIFs were constructed by averaging the iAIF curves over the individual patients for each of the two methods. Pharmacokinetic analysis using the Generalized kinetic model and each of the four AIF choices (iAIF and cAIF for each of the two image-based AIF estimation approaches) was applied to derive the volume transfer rate (K(trans)) and extravascular extracellular volume fraction (ve) in the areas of prostate tumor. Differences between the parameters obtained using iAIF and cAIF for a given method (intra-method comparison) as well as inter-method differences were quantified. The study utilized DCE MRI data collected in 17 patients with histologically confirmed PCa. Comparison at the level of the tumor region of interest (ROI) showed that the two automated methods resulted in significantly different (p<0.05) mean estimates of ve, but not of K(trans). Comparing cAIF, different estimates for both ve, and K(trans) were obtained. Intra-method comparison between the iAIF- and cAIF-driven analyses showed the lack of effect on ve, while K(trans) values were significantly different for one of the methods. Our results indicate that the choice of the algorithm used for automated image-based AIF determination can lead to significant differences in the values of the estimated PK parameters. K(trans) estimates are more sensitive to the choice between cAIF/iAIF as compared to ve, leading to potentially significant differences depending on the AIF method. These observations may have practical consequences in evaluating the PK analysis results obtained in a multi-site setting." @default.
- W1999789781 created "2016-06-24" @default.
- W1999789781 creator A5014376740 @default.
- W1999789781 creator A5014597200 @default.
- W1999789781 creator A5027619317 @default.
- W1999789781 creator A5031919834 @default.
- W1999789781 creator A5034870139 @default.
- W1999789781 creator A5042841835 @default.
- W1999789781 creator A5045581422 @default.
- W1999789781 creator A5074518172 @default.
- W1999789781 creator A5076658037 @default.
- W1999789781 date "2014-05-01" @default.
- W1999789781 modified "2023-09-23" @default.
- W1999789781 title "A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation" @default.
- W1999789781 cites W1963844533 @default.
- W1999789781 cites W1982620936 @default.
- W1999789781 cites W1995499810 @default.
- W1999789781 cites W2000345009 @default.
- W1999789781 cites W2003185676 @default.
- W1999789781 cites W2004005290 @default.
- W1999789781 cites W2010501098 @default.
- W1999789781 cites W2016919721 @default.
- W1999789781 cites W2026616100 @default.
- W1999789781 cites W2035808363 @default.
- W1999789781 cites W2037529037 @default.
- W1999789781 cites W2037863833 @default.
- W1999789781 cites W2038541609 @default.
- W1999789781 cites W2042098439 @default.
- W1999789781 cites W2049766463 @default.
- W1999789781 cites W2069009122 @default.
- W1999789781 cites W2081233490 @default.
- W1999789781 cites W2089513130 @default.
- W1999789781 cites W2096272401 @default.
- W1999789781 cites W2105703325 @default.
- W1999789781 cites W2106787323 @default.
- W1999789781 cites W2117895833 @default.
- W1999789781 cites W2130544939 @default.
- W1999789781 cites W2132413686 @default.
- W1999789781 cites W2134666470 @default.
- W1999789781 cites W2141404119 @default.
- W1999789781 cites W2142635246 @default.
- W1999789781 cites W2146313709 @default.
- W1999789781 cites W2157520944 @default.
- W1999789781 cites W2166544843 @default.
- W1999789781 cites W2168661851 @default.
- W1999789781 doi "https://doi.org/10.1016/j.mri.2014.01.004" @default.
- W1999789781 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3965600" @default.
- W1999789781 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24560287" @default.
- W1999789781 hasPublicationYear "2014" @default.
- W1999789781 type Work @default.
- W1999789781 sameAs 1999789781 @default.
- W1999789781 citedByCount "35" @default.
- W1999789781 countsByYear W19997897812014 @default.
- W1999789781 countsByYear W19997897812015 @default.
- W1999789781 countsByYear W19997897812016 @default.
- W1999789781 countsByYear W19997897812017 @default.
- W1999789781 countsByYear W19997897812018 @default.
- W1999789781 countsByYear W19997897812019 @default.
- W1999789781 countsByYear W19997897812020 @default.
- W1999789781 countsByYear W19997897812021 @default.
- W1999789781 countsByYear W19997897812022 @default.
- W1999789781 countsByYear W19997897812023 @default.
- W1999789781 crossrefType "journal-article" @default.
- W1999789781 hasAuthorship W1999789781A5014376740 @default.
- W1999789781 hasAuthorship W1999789781A5014597200 @default.
- W1999789781 hasAuthorship W1999789781A5027619317 @default.
- W1999789781 hasAuthorship W1999789781A5031919834 @default.
- W1999789781 hasAuthorship W1999789781A5034870139 @default.
- W1999789781 hasAuthorship W1999789781A5042841835 @default.
- W1999789781 hasAuthorship W1999789781A5045581422 @default.
- W1999789781 hasAuthorship W1999789781A5074518172 @default.
- W1999789781 hasAuthorship W1999789781A5076658037 @default.
- W1999789781 hasBestOaLocation W19997897812 @default.
- W1999789781 hasConcept C121608353 @default.
- W1999789781 hasConcept C126322002 @default.
- W1999789781 hasConcept C126838900 @default.
- W1999789781 hasConcept C143409427 @default.
- W1999789781 hasConcept C2776235491 @default.
- W1999789781 hasConcept C2780192828 @default.
- W1999789781 hasConcept C2989005 @default.
- W1999789781 hasConcept C41008148 @default.
- W1999789781 hasConcept C41727105 @default.
- W1999789781 hasConcept C71924100 @default.
- W1999789781 hasConcept C82233179 @default.
- W1999789781 hasConceptScore W1999789781C121608353 @default.
- W1999789781 hasConceptScore W1999789781C126322002 @default.
- W1999789781 hasConceptScore W1999789781C126838900 @default.
- W1999789781 hasConceptScore W1999789781C143409427 @default.
- W1999789781 hasConceptScore W1999789781C2776235491 @default.
- W1999789781 hasConceptScore W1999789781C2780192828 @default.
- W1999789781 hasConceptScore W1999789781C2989005 @default.
- W1999789781 hasConceptScore W1999789781C41008148 @default.
- W1999789781 hasConceptScore W1999789781C41727105 @default.
- W1999789781 hasConceptScore W1999789781C71924100 @default.
- W1999789781 hasConceptScore W1999789781C82233179 @default.
- W1999789781 hasIssue "4" @default.
- W1999789781 hasLocation W19997897811 @default.
- W1999789781 hasLocation W19997897812 @default.