Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999847312> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1999847312 endingPage "471" @default.
- W1999847312 startingPage "435" @default.
- W1999847312 abstract "Abstract D.c. photoconductivity and dual-beam photoconductivity modulation measurements on intrinsic a-Si: H are reported. The dual-beam technique is used to elucidate the recombination mechanisms which affect d.c. photoconductivity. In the dual-beam photoconductivity technique two light beams are used, a steady pump beam with hv > 1·5 eV and a chopped monochromatic beam with 0·6 eV hv < 2·0 eV. The pump beam creates free electrons and holes and thus changes the occupation of the semiconductor gap states through which recombination occurs. The second, monochromatic, beam is used to probe recombination processes by altering the occupation of selected gap states, thereby modulating the photoconductivity. The photoconductivity modulation spectrum, which is dependent on temperature and the intensity of the pump beam, is rich in information about gap states that act as recombination centres. Infrared quenching of photoconductivity is observed below T = 200 K. Analysis of this effect in terms of two classes of gap state allows the identification of a distribution of gap states with a small electron capture coefficient of ∼ 4 × 10−13 cm3 s−1 and with a low-energy cut-off at an optical energy of ∼ 0·6 eV above the valence band edge. Above 220 K, the infrared quenching signal disappears and a slow-response positive modulation effect appears which has a low hv cut-off of 0·8–0·9 eV and peaks at ∼ 1·1 eV. The origin of this effect is as yet unclear. Above 250 K a new signal appears with a higher hv threshold energy of ∼ 0·9–1·0 eV. The appearance and growth of this signal with increasing temperature may be due to a temperature-dependent majority-carrier capture coefficient for the gap state involved." @default.
- W1999847312 created "2016-06-24" @default.
- W1999847312 creator A5010724737 @default.
- W1999847312 date "1982-11-01" @default.
- W1999847312 modified "2023-09-27" @default.
- W1999847312 title "Dual-beam photoconductivity modulation spectroscopy in a-Si: H" @default.
- W1999847312 cites W1656947393 @default.
- W1999847312 cites W1981381491 @default.
- W1999847312 cites W1984213047 @default.
- W1999847312 cites W1986170153 @default.
- W1999847312 cites W1986864759 @default.
- W1999847312 cites W1994436669 @default.
- W1999847312 cites W1999205613 @default.
- W1999847312 cites W2000079467 @default.
- W1999847312 cites W2002415839 @default.
- W1999847312 cites W2003844945 @default.
- W1999847312 cites W2006807090 @default.
- W1999847312 cites W2007824922 @default.
- W1999847312 cites W2009190107 @default.
- W1999847312 cites W2009549756 @default.
- W1999847312 cites W2013224070 @default.
- W1999847312 cites W2033252382 @default.
- W1999847312 cites W2037707193 @default.
- W1999847312 cites W2051292681 @default.
- W1999847312 cites W2054238449 @default.
- W1999847312 cites W2054583619 @default.
- W1999847312 cites W2058997110 @default.
- W1999847312 cites W2060754446 @default.
- W1999847312 cites W2076873065 @default.
- W1999847312 cites W2078155695 @default.
- W1999847312 cites W2079337295 @default.
- W1999847312 cites W2080142820 @default.
- W1999847312 cites W2082701150 @default.
- W1999847312 cites W2087966253 @default.
- W1999847312 cites W3140224128 @default.
- W1999847312 cites W4240643269 @default.
- W1999847312 doi "https://doi.org/10.1080/01418638208224022" @default.
- W1999847312 hasPublicationYear "1982" @default.
- W1999847312 type Work @default.
- W1999847312 sameAs 1999847312 @default.
- W1999847312 citedByCount "50" @default.
- W1999847312 countsByYear W19998473122021 @default.
- W1999847312 countsByYear W19998473122022 @default.
- W1999847312 crossrefType "journal-article" @default.
- W1999847312 hasAuthorship W1999847312A5010724737 @default.
- W1999847312 hasConcept C120665830 @default.
- W1999847312 hasConcept C121332964 @default.
- W1999847312 hasConcept C121745418 @default.
- W1999847312 hasConcept C168834538 @default.
- W1999847312 hasConcept C181966813 @default.
- W1999847312 hasConcept C184779094 @default.
- W1999847312 hasConcept C192562407 @default.
- W1999847312 hasConcept C201999631 @default.
- W1999847312 hasConcept C40833965 @default.
- W1999847312 hasConcept C49040817 @default.
- W1999847312 hasConcept C91881484 @default.
- W1999847312 hasConceptScore W1999847312C120665830 @default.
- W1999847312 hasConceptScore W1999847312C121332964 @default.
- W1999847312 hasConceptScore W1999847312C121745418 @default.
- W1999847312 hasConceptScore W1999847312C168834538 @default.
- W1999847312 hasConceptScore W1999847312C181966813 @default.
- W1999847312 hasConceptScore W1999847312C184779094 @default.
- W1999847312 hasConceptScore W1999847312C192562407 @default.
- W1999847312 hasConceptScore W1999847312C201999631 @default.
- W1999847312 hasConceptScore W1999847312C40833965 @default.
- W1999847312 hasConceptScore W1999847312C49040817 @default.
- W1999847312 hasConceptScore W1999847312C91881484 @default.
- W1999847312 hasIssue "5" @default.
- W1999847312 hasLocation W19998473121 @default.
- W1999847312 hasOpenAccess W1999847312 @default.
- W1999847312 hasPrimaryLocation W19998473121 @default.
- W1999847312 hasRelatedWork W1967498980 @default.
- W1999847312 hasRelatedWork W1970326170 @default.
- W1999847312 hasRelatedWork W1976822715 @default.
- W1999847312 hasRelatedWork W2011998278 @default.
- W1999847312 hasRelatedWork W2012149062 @default.
- W1999847312 hasRelatedWork W2067587427 @default.
- W1999847312 hasRelatedWork W2414374156 @default.
- W1999847312 hasRelatedWork W2538926902 @default.
- W1999847312 hasRelatedWork W2906881944 @default.
- W1999847312 hasRelatedWork W3010201363 @default.
- W1999847312 hasVolume "46" @default.
- W1999847312 isParatext "false" @default.
- W1999847312 isRetracted "false" @default.
- W1999847312 magId "1999847312" @default.
- W1999847312 workType "article" @default.