Matches in SemOpenAlex for { <https://semopenalex.org/work/W1999946446> ?p ?o ?g. }
- W1999946446 endingPage "1360" @default.
- W1999946446 startingPage "1351" @default.
- W1999946446 abstract "In this paper, a four-stage support vector machine (SVM) based multiagent ensemble learning approach is proposed for credit risk evaluation. In the first stage, the initial dataset is divided into two independent subsets: training subset (in-sample data) and testing subset (out-of-sample data) for training and verification purposes. In the second stage, different SVM learning paradigms with much dissimilarity are constructed as intelligent agents for credit risk evaluation. In the third stage, multiple individual SVM agents are trained using training subsets and the corresponding evaluation results are also obtained. In the final stage, all individual results produced by multiple SVM agents in the previous stage are aggregated into an ensemble result. In particular, the impact of the diversity of individual intelligent agents on the generalization performance of the SVM-based multiagent ensemble learning system is examined and analyzed. For illustration, one corporate credit card application approval dataset is used to verify the effectiveness of the SVM-based multiagent ensemble learning system." @default.
- W1999946446 created "2016-06-24" @default.
- W1999946446 creator A5011914191 @default.
- W1999946446 creator A5051532910 @default.
- W1999946446 creator A5058109866 @default.
- W1999946446 creator A5078558986 @default.
- W1999946446 date "2010-03-01" @default.
- W1999946446 modified "2023-10-10" @default.
- W1999946446 title "Support vector machine based multiagent ensemble learning for credit risk evaluation" @default.
- W1999946446 cites W1512688160 @default.
- W1999946446 cites W1524780546 @default.
- W1999946446 cites W1533930991 @default.
- W1999946446 cites W1575296325 @default.
- W1999946446 cites W1607604777 @default.
- W1999946446 cites W1968023063 @default.
- W1999946446 cites W1970532985 @default.
- W1999946446 cites W1980770954 @default.
- W1999946446 cites W1985546543 @default.
- W1999946446 cites W1988518729 @default.
- W1999946446 cites W1995953281 @default.
- W1999946446 cites W1997740464 @default.
- W1999946446 cites W1998442441 @default.
- W1999946446 cites W2000656248 @default.
- W1999946446 cites W2011414287 @default.
- W1999946446 cites W2012079387 @default.
- W1999946446 cites W2015406385 @default.
- W1999946446 cites W2019046182 @default.
- W1999946446 cites W2029197838 @default.
- W1999946446 cites W2034913060 @default.
- W1999946446 cites W2035491076 @default.
- W1999946446 cites W2036753645 @default.
- W1999946446 cites W2052268454 @default.
- W1999946446 cites W2057108816 @default.
- W1999946446 cites W2074770406 @default.
- W1999946446 cites W2084413241 @default.
- W1999946446 cites W2085831731 @default.
- W1999946446 cites W2088048599 @default.
- W1999946446 cites W2088265251 @default.
- W1999946446 cites W2088305531 @default.
- W1999946446 cites W2089811952 @default.
- W1999946446 cites W2092436092 @default.
- W1999946446 cites W2133772980 @default.
- W1999946446 cites W2158068969 @default.
- W1999946446 cites W2159494272 @default.
- W1999946446 cites W2171752105 @default.
- W1999946446 cites W3004732066 @default.
- W1999946446 cites W3123427206 @default.
- W1999946446 cites W39040241 @default.
- W1999946446 cites W4212883601 @default.
- W1999946446 doi "https://doi.org/10.1016/j.eswa.2009.06.083" @default.
- W1999946446 hasPublicationYear "2010" @default.
- W1999946446 type Work @default.
- W1999946446 sameAs 1999946446 @default.
- W1999946446 citedByCount "122" @default.
- W1999946446 countsByYear W19999464462012 @default.
- W1999946446 countsByYear W19999464462013 @default.
- W1999946446 countsByYear W19999464462014 @default.
- W1999946446 countsByYear W19999464462015 @default.
- W1999946446 countsByYear W19999464462016 @default.
- W1999946446 countsByYear W19999464462017 @default.
- W1999946446 countsByYear W19999464462018 @default.
- W1999946446 countsByYear W19999464462019 @default.
- W1999946446 countsByYear W19999464462020 @default.
- W1999946446 countsByYear W19999464462021 @default.
- W1999946446 countsByYear W19999464462022 @default.
- W1999946446 countsByYear W19999464462023 @default.
- W1999946446 crossrefType "journal-article" @default.
- W1999946446 hasAuthorship W1999946446A5011914191 @default.
- W1999946446 hasAuthorship W1999946446A5051532910 @default.
- W1999946446 hasAuthorship W1999946446A5058109866 @default.
- W1999946446 hasAuthorship W1999946446A5078558986 @default.
- W1999946446 hasConcept C119857082 @default.
- W1999946446 hasConcept C12267149 @default.
- W1999946446 hasConcept C124101348 @default.
- W1999946446 hasConcept C134306372 @default.
- W1999946446 hasConcept C154945302 @default.
- W1999946446 hasConcept C177148314 @default.
- W1999946446 hasConcept C185592680 @default.
- W1999946446 hasConcept C198531522 @default.
- W1999946446 hasConcept C33923547 @default.
- W1999946446 hasConcept C41008148 @default.
- W1999946446 hasConcept C43617362 @default.
- W1999946446 hasConcept C45942800 @default.
- W1999946446 hasConceptScore W1999946446C119857082 @default.
- W1999946446 hasConceptScore W1999946446C12267149 @default.
- W1999946446 hasConceptScore W1999946446C124101348 @default.
- W1999946446 hasConceptScore W1999946446C134306372 @default.
- W1999946446 hasConceptScore W1999946446C154945302 @default.
- W1999946446 hasConceptScore W1999946446C177148314 @default.
- W1999946446 hasConceptScore W1999946446C185592680 @default.
- W1999946446 hasConceptScore W1999946446C198531522 @default.
- W1999946446 hasConceptScore W1999946446C33923547 @default.
- W1999946446 hasConceptScore W1999946446C41008148 @default.
- W1999946446 hasConceptScore W1999946446C43617362 @default.
- W1999946446 hasConceptScore W1999946446C45942800 @default.
- W1999946446 hasIssue "2" @default.
- W1999946446 hasLocation W19999464461 @default.
- W1999946446 hasOpenAccess W1999946446 @default.