Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000185636> ?p ?o ?g. }
- W2000185636 endingPage "1696" @default.
- W2000185636 startingPage "1683" @default.
- W2000185636 abstract "Gaussian graphical models are useful to analyze and visualize conditional dependence relationships between interacting units. Motivated from network analysis under different experimental conditions, such as gene networks for disparate cancer subtypes, we model structural changes over multiple networks with possible heterogeneities. In particular, we estimate multiple precision matrices describing dependencies among interacting units through maximum penalized likelihood. Of particular interest are homogeneous groups of similar entries across and zero-entries of these matrices, referred to as clustering and sparseness structures, respectively. A nonconvex method is proposed to seek a sparse representation for each matrix and identify clusters of the entries across the matrices. Computationally, we develop an efficient method on the basis of difference convex programming, the augmented Lagrangian method and the blockwise coordinate descent method, which is scalable to hundreds of graphs of thousands nodes through a simple necessary and sufficient partition rule, which divides nodes into smaller disjoint subproblems excluding zero-coefficients nodes for arbitrary graphs with convex relaxation. Theoretically, a finite-sample error bound is derived for the proposed method to reconstruct the clustering and sparseness structures. This leads to consistent reconstruction of these two structures simultaneously, permitting the number of unknown parameters to be exponential in the sample size, and yielding the optimal performance of the oracle estimator as if the true structures were given a priori. Simulation studies suggest that the method enjoys the benefit of pursuing these two disparate kinds of structures, and compares favorably against its convex counterpart in the accuracy of structure pursuit and parameter estimation." @default.
- W2000185636 created "2016-06-24" @default.
- W2000185636 creator A5018997928 @default.
- W2000185636 creator A5046180797 @default.
- W2000185636 creator A5074904348 @default.
- W2000185636 date "2014-10-02" @default.
- W2000185636 modified "2023-09-23" @default.
- W2000185636 title "Structural Pursuit Over Multiple Undirected Graphs" @default.
- W2000185636 cites W1540764732 @default.
- W2000185636 cites W1969752902 @default.
- W2000185636 cites W1972127338 @default.
- W2000185636 cites W1995824723 @default.
- W2000185636 cites W2007525292 @default.
- W2000185636 cites W2059430992 @default.
- W2000185636 cites W2073307618 @default.
- W2000185636 cites W2074360197 @default.
- W2000185636 cites W2081746825 @default.
- W2000185636 cites W2095640740 @default.
- W2000185636 cites W2125129404 @default.
- W2000185636 cites W2132555912 @default.
- W2000185636 cites W2135311088 @default.
- W2000185636 cites W2140514146 @default.
- W2000185636 cites W2161289668 @default.
- W2000185636 cites W2163707651 @default.
- W2000185636 cites W2950215113 @default.
- W2000185636 cites W3098834468 @default.
- W2000185636 cites W3103368540 @default.
- W2000185636 cites W3106319742 @default.
- W2000185636 cites W4250589301 @default.
- W2000185636 doi "https://doi.org/10.1080/01621459.2014.921182" @default.
- W2000185636 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4310250" @default.
- W2000185636 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25642006" @default.
- W2000185636 hasPublicationYear "2014" @default.
- W2000185636 type Work @default.
- W2000185636 sameAs 2000185636 @default.
- W2000185636 citedByCount "72" @default.
- W2000185636 countsByYear W20001856362014 @default.
- W2000185636 countsByYear W20001856362015 @default.
- W2000185636 countsByYear W20001856362016 @default.
- W2000185636 countsByYear W20001856362017 @default.
- W2000185636 countsByYear W20001856362018 @default.
- W2000185636 countsByYear W20001856362019 @default.
- W2000185636 countsByYear W20001856362020 @default.
- W2000185636 countsByYear W20001856362021 @default.
- W2000185636 countsByYear W20001856362022 @default.
- W2000185636 countsByYear W20001856362023 @default.
- W2000185636 crossrefType "journal-article" @default.
- W2000185636 hasAuthorship W2000185636A5018997928 @default.
- W2000185636 hasAuthorship W2000185636A5046180797 @default.
- W2000185636 hasAuthorship W2000185636A5074904348 @default.
- W2000185636 hasBestOaLocation W20001856362 @default.
- W2000185636 hasConcept C105795698 @default.
- W2000185636 hasConcept C112680207 @default.
- W2000185636 hasConcept C11413529 @default.
- W2000185636 hasConcept C114614502 @default.
- W2000185636 hasConcept C121332964 @default.
- W2000185636 hasConcept C126255220 @default.
- W2000185636 hasConcept C154945302 @default.
- W2000185636 hasConcept C157553263 @default.
- W2000185636 hasConcept C157972887 @default.
- W2000185636 hasConcept C163716315 @default.
- W2000185636 hasConcept C185429906 @default.
- W2000185636 hasConcept C2524010 @default.
- W2000185636 hasConcept C33923547 @default.
- W2000185636 hasConcept C41008148 @default.
- W2000185636 hasConcept C42812 @default.
- W2000185636 hasConcept C45340560 @default.
- W2000185636 hasConcept C62520636 @default.
- W2000185636 hasConcept C73555534 @default.
- W2000185636 hasConcept C80444323 @default.
- W2000185636 hasConceptScore W2000185636C105795698 @default.
- W2000185636 hasConceptScore W2000185636C112680207 @default.
- W2000185636 hasConceptScore W2000185636C11413529 @default.
- W2000185636 hasConceptScore W2000185636C114614502 @default.
- W2000185636 hasConceptScore W2000185636C121332964 @default.
- W2000185636 hasConceptScore W2000185636C126255220 @default.
- W2000185636 hasConceptScore W2000185636C154945302 @default.
- W2000185636 hasConceptScore W2000185636C157553263 @default.
- W2000185636 hasConceptScore W2000185636C157972887 @default.
- W2000185636 hasConceptScore W2000185636C163716315 @default.
- W2000185636 hasConceptScore W2000185636C185429906 @default.
- W2000185636 hasConceptScore W2000185636C2524010 @default.
- W2000185636 hasConceptScore W2000185636C33923547 @default.
- W2000185636 hasConceptScore W2000185636C41008148 @default.
- W2000185636 hasConceptScore W2000185636C42812 @default.
- W2000185636 hasConceptScore W2000185636C45340560 @default.
- W2000185636 hasConceptScore W2000185636C62520636 @default.
- W2000185636 hasConceptScore W2000185636C73555534 @default.
- W2000185636 hasConceptScore W2000185636C80444323 @default.
- W2000185636 hasIssue "508" @default.
- W2000185636 hasLocation W20001856361 @default.
- W2000185636 hasLocation W20001856362 @default.
- W2000185636 hasLocation W20001856363 @default.
- W2000185636 hasLocation W20001856364 @default.
- W2000185636 hasOpenAccess W2000185636 @default.
- W2000185636 hasPrimaryLocation W20001856361 @default.
- W2000185636 hasRelatedWork W1543199037 @default.
- W2000185636 hasRelatedWork W1968697355 @default.