Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000202197> ?p ?o ?g. }
- W2000202197 endingPage "214" @default.
- W2000202197 startingPage "204" @default.
- W2000202197 abstract "This study compares three different artificial intelligence approaches, namely, gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs), in daily stream flow forecasting of Alavian Dam Station on the Soofi-Cahi River in the Northwestern Iran. The study demonstrates that the optimal results were obtained from the triple-input models, including stream flows of current and 2 previous days, and that the GEP model performed better than the ANN and ANFIS models in daily stream flow forecasting. It was found that the optimal GEP model with coefficient of determination R 2 = 0.924, root mean square error = 0.908 m3/s and scatter index = 0.354 in the test stage was superior in forecasting daily stream flow to the optimal ANN and ANFIS models." @default.
- W2000202197 created "2016-06-24" @default.
- W2000202197 creator A5001419931 @default.
- W2000202197 creator A5016315589 @default.
- W2000202197 creator A5044658695 @default.
- W2000202197 creator A5050296176 @default.
- W2000202197 creator A5064448797 @default.
- W2000202197 date "2012-09-01" @default.
- W2000202197 modified "2023-09-25" @default.
- W2000202197 title "Forecasting daily stream flows using artificial intelligence approaches" @default.
- W2000202197 cites W1509600564 @default.
- W2000202197 cites W1590685006 @default.
- W2000202197 cites W1973739515 @default.
- W2000202197 cites W1975201621 @default.
- W2000202197 cites W1988523040 @default.
- W2000202197 cites W1992176519 @default.
- W2000202197 cites W1997052296 @default.
- W2000202197 cites W1998300065 @default.
- W2000202197 cites W1998863178 @default.
- W2000202197 cites W2009203913 @default.
- W2000202197 cites W2009547963 @default.
- W2000202197 cites W2011412119 @default.
- W2000202197 cites W2017703815 @default.
- W2000202197 cites W2018525341 @default.
- W2000202197 cites W2019207321 @default.
- W2000202197 cites W2020618019 @default.
- W2000202197 cites W2025110407 @default.
- W2000202197 cites W2027547541 @default.
- W2000202197 cites W2034908427 @default.
- W2000202197 cites W2055107850 @default.
- W2000202197 cites W2058441759 @default.
- W2000202197 cites W2065717691 @default.
- W2000202197 cites W2072697915 @default.
- W2000202197 cites W2073596094 @default.
- W2000202197 cites W2075475943 @default.
- W2000202197 cites W2077027672 @default.
- W2000202197 cites W2079325629 @default.
- W2000202197 cites W2082100660 @default.
- W2000202197 cites W2133321814 @default.
- W2000202197 cites W2153871226 @default.
- W2000202197 cites W2163718649 @default.
- W2000202197 cites W2311096170 @default.
- W2000202197 cites W2323316069 @default.
- W2000202197 doi "https://doi.org/10.1080/09715010.2012.721189" @default.
- W2000202197 hasPublicationYear "2012" @default.
- W2000202197 type Work @default.
- W2000202197 sameAs 2000202197 @default.
- W2000202197 citedByCount "19" @default.
- W2000202197 countsByYear W20002021972014 @default.
- W2000202197 countsByYear W20002021972015 @default.
- W2000202197 countsByYear W20002021972016 @default.
- W2000202197 countsByYear W20002021972017 @default.
- W2000202197 countsByYear W20002021972018 @default.
- W2000202197 countsByYear W20002021972019 @default.
- W2000202197 countsByYear W20002021972020 @default.
- W2000202197 countsByYear W20002021972021 @default.
- W2000202197 countsByYear W20002021972022 @default.
- W2000202197 crossrefType "journal-article" @default.
- W2000202197 hasAuthorship W2000202197A5001419931 @default.
- W2000202197 hasAuthorship W2000202197A5016315589 @default.
- W2000202197 hasAuthorship W2000202197A5044658695 @default.
- W2000202197 hasAuthorship W2000202197A5050296176 @default.
- W2000202197 hasAuthorship W2000202197A5064448797 @default.
- W2000202197 hasConcept C105795698 @default.
- W2000202197 hasConcept C126645576 @default.
- W2000202197 hasConcept C139945424 @default.
- W2000202197 hasConcept C154945302 @default.
- W2000202197 hasConcept C186108316 @default.
- W2000202197 hasConcept C195975749 @default.
- W2000202197 hasConcept C205649164 @default.
- W2000202197 hasConcept C2524010 @default.
- W2000202197 hasConcept C2988105877 @default.
- W2000202197 hasConcept C2992826812 @default.
- W2000202197 hasConcept C33923547 @default.
- W2000202197 hasConcept C38349280 @default.
- W2000202197 hasConcept C41008148 @default.
- W2000202197 hasConcept C50644808 @default.
- W2000202197 hasConcept C58166 @default.
- W2000202197 hasConcept C58640448 @default.
- W2000202197 hasConcept C6980683 @default.
- W2000202197 hasConceptScore W2000202197C105795698 @default.
- W2000202197 hasConceptScore W2000202197C126645576 @default.
- W2000202197 hasConceptScore W2000202197C139945424 @default.
- W2000202197 hasConceptScore W2000202197C154945302 @default.
- W2000202197 hasConceptScore W2000202197C186108316 @default.
- W2000202197 hasConceptScore W2000202197C195975749 @default.
- W2000202197 hasConceptScore W2000202197C205649164 @default.
- W2000202197 hasConceptScore W2000202197C2524010 @default.
- W2000202197 hasConceptScore W2000202197C2988105877 @default.
- W2000202197 hasConceptScore W2000202197C2992826812 @default.
- W2000202197 hasConceptScore W2000202197C33923547 @default.
- W2000202197 hasConceptScore W2000202197C38349280 @default.
- W2000202197 hasConceptScore W2000202197C41008148 @default.
- W2000202197 hasConceptScore W2000202197C50644808 @default.
- W2000202197 hasConceptScore W2000202197C58166 @default.
- W2000202197 hasConceptScore W2000202197C58640448 @default.
- W2000202197 hasConceptScore W2000202197C6980683 @default.
- W2000202197 hasIssue "3" @default.