Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000202549> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2000202549 endingPage "51" @default.
- W2000202549 startingPage "47" @default.
- W2000202549 abstract "Abstract Often, the most time-consuming step in solving partial differential equations in two space partial differential equations in two space dimensions is an iterative solution of the finite-difference equations. For the closed boundary case, this solution is difficult when the equations are anisotropic, as they are normally when mesh spacing is much longer in one direction than in the other. This paper presents a solution method for use in such problems. The method is shown to be very fast in an anisotropic problem, but not as fast as other available methods in an isotropic problem. the extension to three space dimensions is outlined. Introduction In the finite-difference solution of multidimensional parabolic or elliptic equations, a set of many linear parabolic or elliptic equations, a set of many linear simultaneous algebraic equations arises. The most time-consuming part of the solution is the solving of this set of equations, normally accomplished by using some iterative method. Often the finite-difference equations are anisotropic. By anisotropic it is meant that two of the of diagonal coefficients in each equation are much larger than the other off-diagonal coefficients. When this occurs, the solution becomes more difficult for the closed boundary case. Until recently it appeared that line successive overrelaxation was the best technique to use in such a situation. Now, a method developed by Stone appears best among those published. This paper describes an alternative method for use with anisotropic systems. The method can be considered to be a specialization of a more general technique discussed by De la Vallee Poussin. It consists of a correction applied at each mesh point in a line, coupled with line successive overrelaxation. The method is shown to be very fast in a two-dimensional anisotropic problem. The extension to three dimensions is outlined, but no calculations are presented for that case. A theoretical analysis of the new method will be the subject of a later paper. paper. METHOD Consider the physical system from which the finite-difference equations are derived, as shown in Fig. 1. The system is represented by a matrix of mesh points. The finite-difference equation at each mesh point takes the form .........(1) All coefficients with the exception of di, j, are nonnegative. If the problem is elliptic (steady-slate), bi, j is zero. This equation is more commonly written as follows. .....(2) where This equation is written for each mesh point to create the set of simultaneous algebraic equations that must be solved. The matrix formed from the coefficients of these equations is often symmetric. The mesh points in Fig. 1 are arranged in a square pattern. SPEJ P. 47" @default.
- W2000202549 created "2016-06-24" @default.
- W2000202549 creator A5033331961 @default.
- W2000202549 date "1971-03-01" @default.
- W2000202549 modified "2023-10-18" @default.
- W2000202549 title "An Iterative Matrix Solution Method Suitable for Anisotropic Problems" @default.
- W2000202549 doi "https://doi.org/10.2118/2802-pa" @default.
- W2000202549 hasPublicationYear "1971" @default.
- W2000202549 type Work @default.
- W2000202549 sameAs 2000202549 @default.
- W2000202549 citedByCount "26" @default.
- W2000202549 countsByYear W20002025492012 @default.
- W2000202549 countsByYear W20002025492014 @default.
- W2000202549 countsByYear W20002025492023 @default.
- W2000202549 crossrefType "journal-article" @default.
- W2000202549 hasAuthorship W2000202549A5033331961 @default.
- W2000202549 hasConcept C106487976 @default.
- W2000202549 hasConcept C121332964 @default.
- W2000202549 hasConcept C126255220 @default.
- W2000202549 hasConcept C134306372 @default.
- W2000202549 hasConcept C137119250 @default.
- W2000202549 hasConcept C158622935 @default.
- W2000202549 hasConcept C158693339 @default.
- W2000202549 hasConcept C159694833 @default.
- W2000202549 hasConcept C159985019 @default.
- W2000202549 hasConcept C170036204 @default.
- W2000202549 hasConcept C181330731 @default.
- W2000202549 hasConcept C182310444 @default.
- W2000202549 hasConcept C186867907 @default.
- W2000202549 hasConcept C192562407 @default.
- W2000202549 hasConcept C200602138 @default.
- W2000202549 hasConcept C205951836 @default.
- W2000202549 hasConcept C23917780 @default.
- W2000202549 hasConcept C28826006 @default.
- W2000202549 hasConcept C33923547 @default.
- W2000202549 hasConcept C54067925 @default.
- W2000202549 hasConcept C60866291 @default.
- W2000202549 hasConcept C62520636 @default.
- W2000202549 hasConcept C78045399 @default.
- W2000202549 hasConcept C93779851 @default.
- W2000202549 hasConcept C94523830 @default.
- W2000202549 hasConcept C97826883 @default.
- W2000202549 hasConceptScore W2000202549C106487976 @default.
- W2000202549 hasConceptScore W2000202549C121332964 @default.
- W2000202549 hasConceptScore W2000202549C126255220 @default.
- W2000202549 hasConceptScore W2000202549C134306372 @default.
- W2000202549 hasConceptScore W2000202549C137119250 @default.
- W2000202549 hasConceptScore W2000202549C158622935 @default.
- W2000202549 hasConceptScore W2000202549C158693339 @default.
- W2000202549 hasConceptScore W2000202549C159694833 @default.
- W2000202549 hasConceptScore W2000202549C159985019 @default.
- W2000202549 hasConceptScore W2000202549C170036204 @default.
- W2000202549 hasConceptScore W2000202549C181330731 @default.
- W2000202549 hasConceptScore W2000202549C182310444 @default.
- W2000202549 hasConceptScore W2000202549C186867907 @default.
- W2000202549 hasConceptScore W2000202549C192562407 @default.
- W2000202549 hasConceptScore W2000202549C200602138 @default.
- W2000202549 hasConceptScore W2000202549C205951836 @default.
- W2000202549 hasConceptScore W2000202549C23917780 @default.
- W2000202549 hasConceptScore W2000202549C28826006 @default.
- W2000202549 hasConceptScore W2000202549C33923547 @default.
- W2000202549 hasConceptScore W2000202549C54067925 @default.
- W2000202549 hasConceptScore W2000202549C60866291 @default.
- W2000202549 hasConceptScore W2000202549C62520636 @default.
- W2000202549 hasConceptScore W2000202549C78045399 @default.
- W2000202549 hasConceptScore W2000202549C93779851 @default.
- W2000202549 hasConceptScore W2000202549C94523830 @default.
- W2000202549 hasConceptScore W2000202549C97826883 @default.
- W2000202549 hasIssue "01" @default.
- W2000202549 hasLocation W20002025491 @default.
- W2000202549 hasOpenAccess W2000202549 @default.
- W2000202549 hasPrimaryLocation W20002025491 @default.
- W2000202549 hasRelatedWork W2000202549 @default.
- W2000202549 hasRelatedWork W2003979545 @default.
- W2000202549 hasRelatedWork W2292400479 @default.
- W2000202549 hasRelatedWork W2491524947 @default.
- W2000202549 hasRelatedWork W2739110023 @default.
- W2000202549 hasRelatedWork W3022010538 @default.
- W2000202549 hasRelatedWork W3138105354 @default.
- W2000202549 hasRelatedWork W4233392752 @default.
- W2000202549 hasRelatedWork W4238413990 @default.
- W2000202549 hasRelatedWork W425765158 @default.
- W2000202549 hasVolume "11" @default.
- W2000202549 isParatext "false" @default.
- W2000202549 isRetracted "false" @default.
- W2000202549 magId "2000202549" @default.
- W2000202549 workType "article" @default.