Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000204446> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2000204446 abstract "Precise Remaining Useful Life (RUL) prediction of cutting tools is crucial for reliable operation and to reduce the maintenance cost. This paper proposes Artificial Neural Network (ANN) based approach for accurate RUL prediction of high speed milling cutters. Developed ANN model uses time and statistical features, selected through stepwise regression feature subset selection technique, as input. By doing this, the strong correlation model is achieved and the performance of cutting tool prognosis is enhanced. An examination is carried out in this work on functioning of distinctive models established with same data. Developed ANN model demonstrates improved performance over conventional Multi-Regression Model (MRM) and Radial Basis Functional Network (RBFN)." @default.
- W2000204446 created "2016-06-24" @default.
- W2000204446 creator A5032579352 @default.
- W2000204446 creator A5034117265 @default.
- W2000204446 date "2015-02-01" @default.
- W2000204446 modified "2023-10-18" @default.
- W2000204446 title "Predicting Remaining Useful Life of high speed milling cutters based on Artificial Neural Network" @default.
- W2000204446 cites W1971620986 @default.
- W2000204446 cites W1972745002 @default.
- W2000204446 cites W1977002251 @default.
- W2000204446 cites W1978965153 @default.
- W2000204446 cites W1999314995 @default.
- W2000204446 cites W2002483880 @default.
- W2000204446 cites W2002715875 @default.
- W2000204446 cites W2012509466 @default.
- W2000204446 cites W2013712363 @default.
- W2000204446 cites W2014764114 @default.
- W2000204446 cites W2063130530 @default.
- W2000204446 cites W2076842831 @default.
- W2000204446 cites W2081880995 @default.
- W2000204446 cites W2089146439 @default.
- W2000204446 cites W2116870707 @default.
- W2000204446 cites W2117720586 @default.
- W2000204446 doi "https://doi.org/10.1109/race.2015.7097283" @default.
- W2000204446 hasPublicationYear "2015" @default.
- W2000204446 type Work @default.
- W2000204446 sameAs 2000204446 @default.
- W2000204446 citedByCount "14" @default.
- W2000204446 countsByYear W20002044462017 @default.
- W2000204446 countsByYear W20002044462020 @default.
- W2000204446 countsByYear W20002044462021 @default.
- W2000204446 countsByYear W20002044462022 @default.
- W2000204446 countsByYear W20002044462023 @default.
- W2000204446 crossrefType "proceedings-article" @default.
- W2000204446 hasAuthorship W2000204446A5032579352 @default.
- W2000204446 hasAuthorship W2000204446A5034117265 @default.
- W2000204446 hasConcept C154945302 @default.
- W2000204446 hasConcept C19273510 @default.
- W2000204446 hasConcept C41008148 @default.
- W2000204446 hasConcept C50644808 @default.
- W2000204446 hasConceptScore W2000204446C154945302 @default.
- W2000204446 hasConceptScore W2000204446C19273510 @default.
- W2000204446 hasConceptScore W2000204446C41008148 @default.
- W2000204446 hasConceptScore W2000204446C50644808 @default.
- W2000204446 hasLocation W20002044461 @default.
- W2000204446 hasOpenAccess W2000204446 @default.
- W2000204446 hasPrimaryLocation W20002044461 @default.
- W2000204446 hasRelatedWork W1516340537 @default.
- W2000204446 hasRelatedWork W2077982222 @default.
- W2000204446 hasRelatedWork W2147320012 @default.
- W2000204446 hasRelatedWork W2159443810 @default.
- W2000204446 hasRelatedWork W2386387936 @default.
- W2000204446 hasRelatedWork W3001020386 @default.
- W2000204446 hasRelatedWork W3107474891 @default.
- W2000204446 hasRelatedWork W644753246 @default.
- W2000204446 hasRelatedWork W8897532 @default.
- W2000204446 hasRelatedWork W1629725936 @default.
- W2000204446 isParatext "false" @default.
- W2000204446 isRetracted "false" @default.
- W2000204446 magId "2000204446" @default.
- W2000204446 workType "article" @default.