Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000209534> ?p ?o ?g. }
- W2000209534 endingPage "2486" @default.
- W2000209534 startingPage "2472" @default.
- W2000209534 abstract "Bankruptcy prediction has been a topic of active research for business and corporate organizations since past few decades. The problem has been tackled using various models viz., Statistical, Market Based and Computational Intelligence in the past. Among Computational Intelligence models, Artificial Neural Network has become dominant modeling paradigm. In this Paper, we use a novel Soft Computing tool viz., Fuzzy Support Vector Machine (FSVM) to solve bankruptcy prediction problem. Support Vector Machine is a powerful statistical classification technique based on the idea of Structural Risk Minimization. Fuzzy Sets are capable of handling uncertainty and impreciseness in corporate data. Thus, using the advantage of Machine Learning and Fuzzy Sets prediction accuracy of whole model is enhanced. FSVM is implemented for analyzing predictors as financial ratios. A method of adapting it to default probability estimation is proposed. The test dataset comprises of 50 largest bankrupt organizations with capitalization of no less than $1 billion that filed for protection against creditors under Chapter 11 of United States Bankruptcy Code in 2001–2002 after stock marked crash of 2000. Experimental results on FSVM illustrate that it is better capable of extracting useful information from corporate data. This is followed by a comparative study of FSVM with other approaches. FSVM is effective in finding optimal feature subset and parameters. This is evident from the results thus improving prediction of bankruptcy. The choice of feature subset has positive influence on appropriate kernel parameters and vice versa which demonstrate its appreciable generalization performance than traditional bankruptcy prediction methods. Choosing appropriate value of parameter plays an important role on the performance of FSVM model. The effect of variability in prediction performance of FSVM with respect to various values of different parameters of SVM is also investigated. Finally, a comparative study of clustering power of FSVM is made with PNN on ripley and bankruptcy datasets. The results show that FSVM has superior clustering power than PNN." @default.
- W2000209534 created "2016-06-24" @default.
- W2000209534 creator A5009000710 @default.
- W2000209534 creator A5024912955 @default.
- W2000209534 date "2011-03-01" @default.
- W2000209534 modified "2023-09-30" @default.
- W2000209534 title "Fuzzy Support Vector Machine for bankruptcy prediction" @default.
- W2000209534 cites W1484545635 @default.
- W2000209534 cites W1632356912 @default.
- W2000209534 cites W1964168965 @default.
- W2000209534 cites W1966745127 @default.
- W2000209534 cites W1970079324 @default.
- W2000209534 cites W1974429651 @default.
- W2000209534 cites W1974826193 @default.
- W2000209534 cites W1993145117 @default.
- W2000209534 cites W1994102621 @default.
- W2000209534 cites W2002579289 @default.
- W2000209534 cites W2005596732 @default.
- W2000209534 cites W2006680549 @default.
- W2000209534 cites W2007871702 @default.
- W2000209534 cites W2012552265 @default.
- W2000209534 cites W2014158063 @default.
- W2000209534 cites W2016207894 @default.
- W2000209534 cites W2020261731 @default.
- W2000209534 cites W2020848494 @default.
- W2000209534 cites W2027049724 @default.
- W2000209534 cites W2046872331 @default.
- W2000209534 cites W2048801439 @default.
- W2000209534 cites W2062634819 @default.
- W2000209534 cites W2067818239 @default.
- W2000209534 cites W2075806125 @default.
- W2000209534 cites W2088368357 @default.
- W2000209534 cites W2093829413 @default.
- W2000209534 cites W2097752063 @default.
- W2000209534 cites W2098307847 @default.
- W2000209534 cites W2100040490 @default.
- W2000209534 cites W2100907527 @default.
- W2000209534 cites W2115682519 @default.
- W2000209534 cites W2117699582 @default.
- W2000209534 cites W2133292035 @default.
- W2000209534 cites W2147042167 @default.
- W2000209534 cites W2158068969 @default.
- W2000209534 cites W2163502483 @default.
- W2000209534 cites W2232707789 @default.
- W2000209534 cites W3123250625 @default.
- W2000209534 cites W3125327354 @default.
- W2000209534 cites W3125744792 @default.
- W2000209534 cites W3148128010 @default.
- W2000209534 cites W4230474071 @default.
- W2000209534 cites W4241034799 @default.
- W2000209534 doi "https://doi.org/10.1016/j.asoc.2010.10.003" @default.
- W2000209534 hasPublicationYear "2011" @default.
- W2000209534 type Work @default.
- W2000209534 sameAs 2000209534 @default.
- W2000209534 citedByCount "138" @default.
- W2000209534 countsByYear W20002095342012 @default.
- W2000209534 countsByYear W20002095342013 @default.
- W2000209534 countsByYear W20002095342014 @default.
- W2000209534 countsByYear W20002095342015 @default.
- W2000209534 countsByYear W20002095342016 @default.
- W2000209534 countsByYear W20002095342017 @default.
- W2000209534 countsByYear W20002095342018 @default.
- W2000209534 countsByYear W20002095342019 @default.
- W2000209534 countsByYear W20002095342020 @default.
- W2000209534 countsByYear W20002095342021 @default.
- W2000209534 countsByYear W20002095342022 @default.
- W2000209534 countsByYear W20002095342023 @default.
- W2000209534 crossrefType "journal-article" @default.
- W2000209534 hasAuthorship W2000209534A5009000710 @default.
- W2000209534 hasAuthorship W2000209534A5024912955 @default.
- W2000209534 hasConcept C10138342 @default.
- W2000209534 hasConcept C119857082 @default.
- W2000209534 hasConcept C12267149 @default.
- W2000209534 hasConcept C124101348 @default.
- W2000209534 hasConcept C138885662 @default.
- W2000209534 hasConcept C139502532 @default.
- W2000209534 hasConcept C140073362 @default.
- W2000209534 hasConcept C154945302 @default.
- W2000209534 hasConcept C162324750 @default.
- W2000209534 hasConcept C2776401178 @default.
- W2000209534 hasConcept C2777388754 @default.
- W2000209534 hasConcept C41008148 @default.
- W2000209534 hasConcept C41895202 @default.
- W2000209534 hasConcept C504631918 @default.
- W2000209534 hasConcept C50644808 @default.
- W2000209534 hasConcept C58166 @default.
- W2000209534 hasConceptScore W2000209534C10138342 @default.
- W2000209534 hasConceptScore W2000209534C119857082 @default.
- W2000209534 hasConceptScore W2000209534C12267149 @default.
- W2000209534 hasConceptScore W2000209534C124101348 @default.
- W2000209534 hasConceptScore W2000209534C138885662 @default.
- W2000209534 hasConceptScore W2000209534C139502532 @default.
- W2000209534 hasConceptScore W2000209534C140073362 @default.
- W2000209534 hasConceptScore W2000209534C154945302 @default.
- W2000209534 hasConceptScore W2000209534C162324750 @default.
- W2000209534 hasConceptScore W2000209534C2776401178 @default.
- W2000209534 hasConceptScore W2000209534C2777388754 @default.
- W2000209534 hasConceptScore W2000209534C41008148 @default.